
15-441/641: Computer Networks
Project 2: TCP in The Wild

TAs: Kartik Chitturi <kchittur@andrew.cmu.edu>
Ines Potier <ipotier@andrew.cmu.edu>

October 27, 2019

1 Introduction
We have been talking about TCP, the default transport protocol on the Internet. TCP serves many purposes:
it provides reliable, in-order delivery of bytes, it makes sure the sender does not send too fast and overwhelm
the receiver (flow control), or the network (congestion control). It also aims to be fair: when multiple senders
share the same link, they should receive roughly the same proportion of bandwidth.

In class, we discussed TCP Reno. A variant of TCP Reno, NewReno, used to be the standard TCP
on the Internet. In the first two checkpoints of this project, you will focus on implementing a transport
algorithm that is very similar to TCP Reno.

However, Reno and NewReno are just two of many congestion control algorithms (CCAs). Companies
use different TCPs depending on the context, for example, one TCP for data centers and another for serving
web content on the Internet. For web content, the most common algorithm – and the default in Linux servers
– is called Cubic. Akamai, the largest content distribution network in the world, uses a proprietary TCP
called FastTCP. In the final checkpoint, you will get creative and design your own, new congestion control
algorithm for long file transfers on the Internet.
With this project, you will gain experience in:

• ... building more programs in C, and writing more programs which are compatible with standards for
inter-operability.

• ... reasoning about designing end-to-end systems when the underlying network is fundamentally unre-
liable and disorderly.

• ... analyzing a program for performance and fairness, designing ways to improve it, and testing those
improvements.

To guide your development process, we have divided the project into three checkpoints. Unlike P1, the
grading and checkpoints for both 441 and 641 are the same.

CP Goal % P1 Grade Deadline
441 641 441 641

1 Implement the three-way handshake and
connection shutdown

33% 33% Oct 18, 2019 Oct 18, 2019

2 Implement flow control and Reno-style
congestion control.

33% 33% Nov 1, 2019 Nov 1, 2019

3 Design, implement, and evaluate your
own congestion control algorithm.

33% 33% Nov 6, 2019 Nov 6, 2019

At each checkpoint (CP), we will assess your implementation to verify that it supports all of the goals for
the current checkpoint and we will rerun some tests from the previous checkpoint(s) as well. This means
that if you fix a bug you had in an earlier checkpoint, you will get credit for doing so in a later checkpoint.
Of course, if you break a feature that was originally implemented correctly, you will lose some points, so you
should return your tests from earlier checkpoints before you submit a later checkpoint.

1

mailto:kchittur@andrew.cmu.edu 
mailto:ipotier@andrew.cmu.edu


2 CMU-TCP
TCP is a network layer protocol that enables different devices to communicate. There are a variety of different
algorithms for TCP’s congestion controller such as Reno, New Reno, Cubic, and more. For this project we
are focusing on Reno in CP2; in CP3 you will get to design your own congestion control algorithms.

You will build your CMU-TCP using UDP sockets, crafting packets and transmitting them yourself.
UDP will not re-transmit lost packets, and UDP has no controls on how fast you transmit: you will have to
augment UDP with these features yourself.

As both sides (initiator and listener) can both send and receive, you’ll be tracking a lot of data and
information. It’s important to write down everything each side knows while writing your implementation
and to utilize interfaces to keep your code module and re-usable. A very practical guide to implementing
TCP is found in the textbook in chapters 5.2 and 6.3. Please read these sections before getting
started!

3 Project specification
3.1 Background
This project will consist of three checkpoints. You will receive starter code that implements Stop-and-Wait
transmission, but it will be very slow. Furthermore, it does not have a handshake or a teardown, so if
the very first packet is lost (or the very last one), it will not perform correctly. In CP1, you will augment
the starter code with a handshake and teardown phase. You will also implement two features to make the
Stop-and-Wait transport protocol recover from loss more efficiently. In the second checkpoint, we will get
rid of Stop-and-Wait and use Windowed Sending. To choose an appropriate window size, you will need to
implement flow control and congestion control. In this checkpoint, you will implement a basic version of
Reno as your congestion control algorithm. In the third and final checkpoint, you will design and implement
your own algorithm that is faster than your Reno implementation when used on the Internet.

3.2 What are you actually turning in
You are implementing the cmu tcp.h interface. Your code will be tested by us creating other C files that
will utilize your interface to perform communications. The starter code has an example of how we might
perform the tests, we have a client.c and server.c which utilize the sockets to send information back and
forth. You can add additional helper functions to cmu tcp or change the implementation of the 4 core
functions (socket, close, read and write), however you cannot change the function signature of the 4
core functions. Further, we will be utilizing grading.h to help us test your code. We may change any of
the values for the variables present in the file to make sure you aren’t hard coding anything. Namely, we
will be fluctuating the packet length, and the initial window variables.

Additionally, for checkpoints 2 and 3 you will need to provide a graph showing the number of packets
in flight (or unacked packets) vs time. This graph must demonstrate where your algorithm slows
down due to congestion, and how your algorithm speeds up in an uncongested network. We
have provided you with a sample file in the test directory that you can transfer and graph. We have also
provided a python file called gen graph.py to help you generate the graph. It should be setup to monitor
packets sent to and from the sender’s perspective - you may need to change and update the gen graph.py
script in order to provide a quality graph.

4 Checkpoint 1
In this checkpoint, you will add handshaking, session termination, and RTT estimation to your implemen-
tation. The handshaking and session termination will make sure that even if the first or last packet are lost,
the data will be transferred reliably. RTT estimation will make the Stop-and-Wait sender recover from loss
more quickly.

2

https://book.systemsapproach.org/e2e/tcp.html


4.1 Starter Code
The following files have been provided for you to use:

• cmu packet.h: this file describes the basic packet format and header. You are not allowed to modify
this file until the final submission! The scripts that we provide to help you graph your packet traces
rely on this file being unchanged.

• grading.h: these are variables that we will use to test your implementation, please do not make any
changes here as we will be replacing it when running tests.

• server.c: an application using the server side of your transport protocol. We may test your code using
a different server program, so do not keep any variables or functions here that are necessary for your
protocol to use.

• client.c: an application using the client side of your transport protocol. We may test your code using
a different client application, so do not keep any variables or functions here that are necessary for your
protocol to use.

• cmu tcp.c: this contains the main socket functions required of your TCP socket including reading,
writing, opening and closing.

• backend.c: this file contains the code used to emulate the buffering and sending of packets. This is
where you should spend most of your time.

• gen graph.py: Python script that takes in a pcap file and graphs your sequence numbers by time.

• cmu packet.h All the communication between your server and client will use UDP as the underlying
protocol. All packets will begin with the common header described in cmu packet.h as follows:

– Course Number [4 bytes]
– Source Port [2 bytes]
– Destination Port [2 bytes]
– Sequence Number [4 bytes]
– Acknowledgement Number [4 bytes]
– Header Length [2 bytes]
– Packet Length [2 bytes]
– Flags [1 byte]
– Advertised Window [2 bytes]
– Extension length [2 bytes]
– Extension Data [You Decide]

All multi-byte integer fields must be transmitted in network byte order. ntoh, hton, and friends will be
very important functions for you to call! All integers must be unsigned, and the course number should be
set to 15441 (the scripts rely on this). You are not allowed to change any of the fields in the header, with the
exception of the extension data which you may want to modify in Checkpoint 3. Additionally, plen cannot
exceed 1400 in order to prevent packets from being broken into parts.

You can verify that your headers are sent correctly using wireshark or tcpdump. You can view packet
data sent including the full Ethernet frames. When viewing your packet you should see something similar
to the below image; in this case the payload starts at 0x0020. The course number - 15441- shows up in hex
as 0x00003C51.

3



4.2 Checkpoint 1 Tasks
Your server MUST:

1. Implement the TCP Handshake and Teardown - Implement TCP starting handshake and teardown
handshake before data transmission starts and ends [1]. This should happen in the constructor and
destructor for cmu socket.

2. Implement improved RTT Estimation - You will notice that loss recovery is very slow! One reason
for this is the starter code uses a fixed retransmission timeout (RTO) of 3 seconds. Implement an
adaptive RTO by estimating the RTT with Jacobson/Karels Algorithm or using the Karns/Partridge
algorithm [3].

4.3 Common Q&A
What packets are required to have ACKs? All packets except the initial SYN packet MUST have the
ACK flag set and the next expected value.
Do I have to have an ACK even I am sending a data packet? Yes, all data packets must still have
the ACK flag set and contain the next expected value from the other side.
What about FIN packets? Do they need ACKs? Yes.
What if the other side sends me a packet without an ACK? You can drop it.
What about counting for duplicate ACKs? Do I count every packet I receive with the same
next value expected as a duplicate ACK?

First of all, you don’t have to start counting Duplicate ACKs until Checkpoint 2. This is not relevant
here! Second of all, you can think of packets with no data in them as ‘true’ ACKs – which were generated
upon receipt of a packet, and count towards duplicate ACKs. Packets with data in them that still have the
ACK flag set are just redundancy ACKs – if the ‘true’ ACK gets dropped, we still have the value in the data
packet as a backup. But, they do not count towards duplicate ACKs.

But forget about this question until CP2, please!

4



4.4 Checkpoint 1 Grading
The breakdown of grading for Checkpoint 1 is below.

Task Weight Subcriteria

Format 10% Assigned by human grader:
• Correct turnin – Makefile, compilation,
properly tagged repo, TA’s don’t have to edit
or search for files (10%)

• Code style and commenting will be assigned
in CP3.

Initiator
Handshake 20% Assigned in AutoLab:

• Establishes connection with ‘good’ listener
(10%)

• Establishes connection even when packets
are lost (5%)

• Rejects invalid packets from misbehaving lis-
teners (2.5%)

• Does not crash (2.5%).

Listener
Handshake 20% Assigned in AutoLab:

• Establishes connection with ‘good’ initiator
(10%)

• Establishes connection even when packets
are lost (5%)

• Rejects invalid packets from misbehaving
initiators (2.5%)

• Does not crash. (2.5%)

Teardown 20% Assigned in AutoLab:
• Closes connection correctly with ‘good’
other endpoint (12.5%).

• Retransmits FIN when FIN or FIN/ACK is
lost (5%).

• Does not crash (2.5%)

RTT Estimation 20% Assigned in AutoLab:
• Does not re-transmit slower than 3 RTTs
(10%)

• Does not re-transmit faster than one RTT
(5%).

• Handles multiple retransmissions if the same
packet is lost more than once (5%)

File Transfer 10% Assigned in AutoLab:
• Correctly transmits a file end to end, despite
loss. (10%)

5



5 Checkpoint 2
Once you have implemented the basics, you can add windowing. To set your window size will require Flow
Control a Congestion Control Algorithm (CCA). You will implement TCP Reno, as discussed in class. Hence,
the number of outstanding (unACKed) packets will now be be min(window size, congestion window size).
You will have to demonstrate to us using graphs from real connections that your TCP Reno implementation
uses Additive Increase under normal operation, and Multiplicative Decrease under loss.

5.1 Checkpoint 2 Tasks
Your implementation MUST:

1. Use byte-based sequence numbers: Change the sequence numbers and ACK numbers to represent the
number of bytes sent and received (rather than the number of segments/packets, as in CP1).

2. Implement Windowing: Implement TCP’s sliding window algorithm to send a window of packets [2].
You do not need to implement Nagle’s algortihm.

3. Implement duplicate ACK Retransmission - Another reason loss recovery is slow is the starter code
relies on timeouts to detect packet loss. One way to recover more quickly is to retransmit whenever
you see triple duplicate ACKs. Implement retransmission on the receipt of 3 duplicate ACKs.

4. Implement Flow Control: Update your code to use a the receiver’s AdvertisedWindow as your maximum
window size; this field is contained in the CMUTCP Header. You will ned to update your receiver to
update the AdvertisedWindow as it receives data.

5. Implement Congestion Control: you will need to add a new parameter, the congestion window: cwnd.
The size of your sending window should now be the minimum of cwnd and the advertised window. You
should additionally maintain that the total amount of data buffered for the application (unread data,
both ordered and unordered bytes) should be less than MAX NETWORK BUFFER.

Make sure to test your new features with many different network settings using tcconfig. You should
transmit a large file again using your TCP implementation, like you did in Checkpoint 1, set the bandwidth
small in relation to the size of your file (ex: transferring 100Mb file, 1Mbps bandwidth) and add packet loss
(ex: 5%) in order to see the TCP sawtooth pattern.

6



For your info, Here is a copy of the full state machine. Section 6.3 of the textbook is also
very helpful!

Here are the values from grading.h you must use in your code for this checkpoint. We will test your
code (and you should too!) by changing these values. All of these values are in bytes.

1. WINDOW INITIAL WINDOW SIZE: Initial window size for slow start. In slow start, you should initially set
cwnd = WINDOW INITIAL WINDOW SIZE.

2. WINDOW INITIAL SSTHRESH: ssthresh value for congestion control. In slow, start, you should initially
set ssthresh = WINDOW INITIAL SSTHRESH.

3. MAX LEN: Max packet length of any packet - including header. This value will not change and will
always remain fixed.

4. MAX NETWORK BUFFER: Maximum number of bytes that the TCP implementation can hold/buffer for
the application. (This includes unread, ordered and unordered bytes received on the network, and
received by the application). Thus, the size of your sending buf should be set to MAX NETWORK BUFFER
and the size of received buf should be set to MAX NETWORK BUFFER.

7



5.2 Checkpoint 2 Grading
The breakdown of grading for Checkpoint 2 is below.

Task Weight Subcriteria

Format 5% Assigned by human grader:
• Correct turnin – Makefile, compilation,
properly tagged repo, TA’s don’t have to edit
or search for files (5%)

• Code style and commenting will be assigned
in CP3.

Basics 25% Assigned in AutoLab:
• File can be successfully transferred, with and
without loss (15%)

• Handshake and teardown still execute prop-
erly (5%)

• Does not crash (5%)

Windowing &
Flow Control 40% Assigned in AutoLab:

• Transmits multiple packets in flight at once
(10%)

• Transmission never exceeds receiver’s Adver-
tisedWindow (10%)

• Retransmissions are performed after three
duplicate ACKs (10%)

• Receiver properly adjusts AdvertisedWin-
dow (10%).

Congestion
Control 30% Assigned in AutoLab:

• graph.pdf Illustrates slow start, additive in-
crease, and multiplicative decrease within a
connection (10%)

• Sender uses multiplicative increase until
reaching ssthresh or loss (5%).

• ACKs received without loss increase window
linearly after sstresh(5%).

• Window halves on triple duplicate ACKs
(5%).

• Sender returns to slow start upon timeout
loss (5%).

8



6 Checkpoint 3
In checkpoint 3, you will improve your TCP implementation to achieve better performance for Internet
services. To simulate wide-area network conditions, set your network loss rate to 0.1%, delay to 50ms, and a
maximum bandwidth of 50Mbps. You will perform your own analysis of the performance of TCP Reno in this
setting, and then develop a new congestion control algorithm of your own to overcome Reno’s shortcomings.
Checkpoint 3 has the following steps.

6.1 Profile Reno
First, you should consider your TCP Reno implementation and how to improve it. However, there is one
obvious thing slowing your TCP Reno implementation down: the Advertised Window is too small for Reno
to saturate the link.

Download the new CMUTCP header, which now includes 32 bits for the Advertised Window. Incorporate
it into your TCP Reno implementation.

Using your updated Reno implementations, initiate connections transfering a 20MB file over our simulated
wide are network and consider: what throughput does TCP Reno sustain? What is preventing your TCP
Reno implementation from sustaining 50Mbps – the full link capacity?
Deliverable: In a file called designdiscussion.pdf, create a heading called ‘Reno Analysis’. In this section,
you should:

• Measure the transfer time for a 20MB file using your (updated) Reno implementation.

• Include a graph showing how the congestion window changes during the transfer.

• Using the above graph, discuss why Reno isn’t able to sustain 100% (50Mbps) throughput all the time.

6.2 Propose a new Algorithm
Now you will propose a new congestion control algorithm to replace Reno and improve on its shortcomings.
How might you make file transfer complete faster, while still keeping the algorithm fair and stable?
Deliverable: In designdiscussion.pdf, create a heading called ‘Algorithm Proposal’. Under this heading,
you should do the following:

• Propose a new algorithm (or a modification to Reno) that will improve the problem you identified in
the previous section.

• Provide a detailed algorithm description – including a state machine – that will allow others to replicate
your algorithm.

• Describe why your new algorithm will improve throughput lative to your Reno implementation.

• Explain why you believe your new algorithm will still be fair when multiple connections compete.

6.3 Evaluate your new Algorithm
Finally, you will implement and evaluate your new algorithm. You will receive full credit for the imple-
mentation if you can demonstrate that your new algorithm has throughput that is 15% higher than your
Enhanced Reno implementation, and if when 2 connections compete over the same 50Mbps scenario, Jain’s
Fairness Index is at least 0.9.
Deliverable: In designdiscussion.pdf, you will describe the evaluation of your new algorithm. Create a new
heading called ‘Evaluation: ‘NAME YOUR ALGORITHM”1 Under this heading, present the following:

1Replace NAME YOUR ALGORITHM with a cool name for your new algorithm. Some real algorithm names are Sprout,
Copa, Cubic, Compound, FastTCP, and BBR, for example.

9



• Provide data comparing your Reno implementation and your new algorithm completing a 20MB trans-
fer. Compare the following properties.

1. How long does it take for a single connection to transfer 20MB?
2. How long does it take for two connections, sharing the same link, to transfer 20MB each?
3. What is Jain’s Fairness Index when the two connections compete?

• Provide a graph showing how your new congestion control algorithm’s window changes during a 20MB
transfer.

• Using the graph and data you provide above, discuss where your new algorithm behaves differently
than Reno and why this improves throughput.

6.4 Optional: Fine Tune and Compete!
Optional: We will enable the scoreboard on Autolab to provide a ‘score’ for each submission. This score will
be calculated as follows:

(Jain’s Fairness Index)2 × Average Total Throughput for Two Flows

for two flows sending a file transfer of 20MB over a 50Mbps link with 50ms of latency and 0.1% loss.
The top-3 teams in the class will win some official, ‘My Heart is In The Network’ swag. You might make

multiple extensions to your algorithm to win this competition.

10



6.5 Checkpoint 3 Grading
The breakdown of grading for Checkpoint 3 is below.

Task Weight Subcriteria

Format 15% Assigned by human grader:
• Correct turnin – Makefile, compilation,
properly tagged repo, TA’s don’t have to edit
or search for files (5%)

• Code commenting and style (10%)

Basics 30% Assigned in AutoLab:
• File can be successfully transferred, with and
without loss (20%)

• When two senders compete for a link side by
side, JFI is at least 0.9 (10%)

Reno Analysis 15% Assigned by Human Graer:
• Graph shows Reno algorithm. (5%)
• Explanation identifies a shortcoming in
Reno which makes sense (5%)

• Explanation uses graph to illustrate the
identified shortcoming of Reno (5%)

Algorithm
Proposal 20% Assigned by Human Grader:

• New algorithm proposed overcomes short-
coming described in Reno analysis (10%)

• Description of new algorithm is sufficient for
someone to re-implement the algorithm inde-
pendently. (10%)

Algorithm
Evaluation 20% Assigned by Human Grader:

• Results show new algorithm achieving 15%
higher throughput than Reno(5%)

• Results show new algorithm achieving JFI
> 0.9 (5%)

• Graph shows new algorithm behaving differ-
ently than Reno (5%)

• Text explains why new algorithm beats
Reno, and uses graph in explanation. (5%)

11



7 Testing Your Code
7.1 Virtual Machine
For this project, you will do all of your development on your own machine using VMs. You should install
VirutalBox [10] and Vagrant [9] on your own machine. We have provided a Vagrantfile for two VM’s,
client and server. If you keep the Vagrantfile in the same directory as the 15-441-project-2, folder then
you can edit code on your machine, or on either VM, and Vagrant will automatically sync it to both VMs
/vagrant directory. You can log into a VM by using vagrant up, then vagrant ssh <NAME>. Refer to
references for more information on how to install and use VirtualBox and Vagrant.

The server and client are connected via a private network with IP addresses 10.0.0.1 and 10.0.0.2
respectively. (Note: your code should work even if these IP addresses were changed). The interface name
for these addresses is eth1 on both machines.

The following sections we describe the tools that are already installed on the VMs to help you (and us)
test your code. You can also install any additional tools you need. Please document any additional tools
you install to run tests in the tests.txt file.

7.2 Control the network characteristics with tcconfig
tcconfig [4] is installed on the VMs to enable you to control the network characteristics for traffic between
the VMs. The initial default settings on the VMs are a 20ms delay on both machines (so the total RTT
is 40ms), and 100Mbps bidirectional bandwidth. Running tcshow eth1 on the VMs will show you these
settings. You can set additional tc variables by using tcset. Refer to the references for more information
on how to use tcconfig to simulate different network characteristics including packet loss, reordering, and
corruption which will be useful for testing your code.

7.3 Capture and analyze packets with tcpdump and tshark
tcpdump [7] and Wireshark (terminal program: tshark [5]) are installed on the VMs to enable you to
capture packets sent between the VMs and analyze them. We provide the following files in the directory
15-441-project-2/utils/ to help with packet analysis (feel free to modify these if you want):

– utils/capture packets.sh: A simple program showing how you can start and stop packet captures,
as well as analyze packets using tshark. The start function starts a packet capture in the background.
The stop function stops a packet capture. Lastly, the analyze function will use tshark to output a
CSV file with header information from your TCP packets.

– utils/tcp.lua: A Lua plugin so Wireshark can dissect our custom cmu packet format [6].
capture packets.sh shows how you can pass this file to tshark to parse packets. To use the plugin
with the Wireshark GUI on your machine, you add this file to Wireshark’s plugin folder [8].

7.4 Running tests with pytest
There are many ways you can write tests for your code for this project. To help get you started, pytest [11]
is installed on the VMs and we provide example basic tests in test/test cp1.py. Running make test will
run these tests automatically. You should expand these tests or use a different tool to test your code (but
make test should still run your tests). As in Project 1, you should also use standard C debugging tools
including gdb and Valgrind which are also installed on the VMs.

7.5 Running a large file transfer
The starter code client.c and server.c will transmit a small file, cmu tcp.c between the client and
server. You should also test your code by transmitting a larger file (ex: 100MB file), capturing the packets,

12



and plotting the number of unacked packets vs. time. You will turn in a PDF of this graph and this PCAP file.

You can use the utilities described in 7.3 to create submit.pcap by running the following commands:

Start tcpdump and the server:

vagrant@server:/vagrant/15-441-project-2$ make
vagrant@server:/vagrant/15-441-project-2$ utils/capture_packets.sh start capture.pcap
vagrant@server:/vagrant/15-441-project-2$ ./server

Start the client:

vagrant@client:/vagrant/15-441-project-2$ ./client

When the client and server code finishes running, stop the packet capture on the server:

vagrant@server:/vagrant/15-441-project-2$ utils/capture_packets.sh stop capture.pcap

8 Hand-In
As in Project 1, code submission for checkpoint and the final deadline will be done through Autolab (auto-
lab.cs.cmu.edu). Every checkpoint will be a git tag in the code repo. To create a tag, run

git tag -a checkpoint-<num> -m <message> [<commit hash> ]

with appropriate checkpoint number and custom message filled in. (Put whatever you like for the message
— git won’t let you omit it.) The optional commit hash can be used to specify a particular commit for the
tag; it you omit it, the current commit is used. For the checkpoint, you will be expected to have a working
Makefile, and whatever source needed to compile a working binary. To submit your code, make a tarball file
of your repo after you tag it. Then login to autolab website, choose 15-441: Computer Networks (S19)
-> project2cp<N>, and then upload your tarball. The submitted tarball should contain a directory named
15-441-project-2, which has the following files that implement all required functionality:

• Makefile: Make sure all the variables and paths are set correctly such that your program compiles in
the hand-in directory. Running make test should run your testing code.

• All of your source code files and test files. (files ending in .c, .h, etc. only, no .o files and no executables)

• graph.pdf: (CP2 and CP3 only) Your graph of the currently unacked packets in flight vs time computed
from a packet capture of a large file transfer using your implementation.

There are a few requirements in order for your code to work well with the autograder.

• Your top level directory must be named 15-441-project-2

• 15-441-project-2 must contain the following files and directories

– Makefile: Please make sure that you compile you code with the gcc flag “-fPIC”.
– readme.txt
– tests.txt: A description of all your tests
– src/ : For all your source files
– inc/ : For all your header files
– build/ : Make should place all object files within this directory
– tests/ : For all your testing scripts and files
– utils/ : Utility files to help you capture/analyze packets

• Your submission should not contain any files starting with the word “grader”

13



References
[1] TCP connection establishment and termination:

https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination

[2] TCP sliding window:
https://book.systemsapproach.org/direct/reliable.html#sliding-window
https://book.systemsapproach.org/e2e/tcp.html#sliding-window-revisited

[3] Adaptive retransmission:
https://book.systemsapproach.org/e2e/tcp.html#adaptive-retransmission

[4] TCConfig: https://github.com/thombashi/tcconfig

[5] tshark: https://www.wireshark.org/docs/man-pages/tshark.html

[6] Creating a wireshark dissector in Lua: https://mika-s.github.io/wireshark/lua/dissector/2017/
11/04/creating-a-wireshark-dissector-in-lua-1.html

[7] tcpdump: https://linux.die.net/man/8/tcpdump

[8] Wireshark plugin folder: https://www.wireshark.org/docs/wsug_html_chunked/ChPluginFolders.
html

[9] Vagrant: https://www.vagrantup.com/intro/getting-started/index.html

[10] VirtualBox: https://www.virtualbox.org/

[11] pytest: https://docs.pytest.org/en/latest/

[12] TCP Congestion Control: https://intronetworks.cs.luc.edu/current/html/reno.html#
tcp-reno-and-congestion-management

14

https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
https://book.systemsapproach.org/direct/reliable.html#sliding-window
https://book.systemsapproach.org/e2e/tcp.html#sliding-window-revisited
https://book.systemsapproach.org/e2e/tcp.html#adaptive-retransmission
https://github.com/thombashi/tcconfig
https://www.wireshark.org/docs/man-pages/tshark.html
https://mika-s.github.io/wireshark/lua/dissector/2017/11/04/creating-a-wireshark-dissector-in-lua-1.html
https://mika-s.github.io/wireshark/lua/dissector/2017/11/04/creating-a-wireshark-dissector-in-lua-1.html
https://linux.die.net/man/8/tcpdump
https://www.wireshark.org/docs/wsug_html_chunked/ChPluginFolders.html
https://www.wireshark.org/docs/wsug_html_chunked/ChPluginFolders.html
https://www.vagrantup.com/intro/getting-started/index.html
https://www.virtualbox.org/
https://docs.pytest.org/en/latest/
https://intronetworks.cs.luc.edu/current/html/reno.html#tcp-reno-and-congestion-management
https://intronetworks.cs.luc.edu/current/html/reno.html#tcp-reno-and-congestion-management

	Introduction
	CMU-TCP
	Project specification
	Background
	What are you actually turning in

	Checkpoint 1
	Starter Code
	Checkpoint 1 Tasks 
	Common Q&A
	Checkpoint 1 Grading

	Checkpoint 2
	Checkpoint 2 Tasks
	Checkpoint 2 Grading

	Checkpoint 3
	Profile Reno
	Propose a new Algorithm
	Evaluate your new Algorithm
	Optional: Fine Tune and Compete!
	Checkpoint 3 Grading

	Testing Your Code
	Virtual Machine
	Control the network characteristics with tcconfig
	Capture and analyze packets with tcpdump and tshark
	Running tests with pytest
	Running a large file transfer

	Hand-In

