
15-441/641: Computer Networks
Intradomain Routing, cont’d

15-441 Spring 2019
Profs Peter Steenkiste & Justine Sherry

3

1

2
5

4

1, 0, 1

2, 0, 2

3, 0, 3

4, 0, 4

5, 0, 5

Refresher…

(root, path lenth, next hop)

2, 0, 2

2

2, 0, 2

2
3, 1, 3

Root node
ID for this new

route is higher than
the current node ID. I should

keep my old route.

2, 0, 2

2

1, 1, 1

Root node
ID for this new

route is lower than the
current node ID. I should

update my route!

1, 1, 1

2

I
should tell

my neighbors about
the change!!

1, 1, 1

21, 2, 2

1, 2, 2

1, 2, 2

Refresh: Try it Out!

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Resilience: the ability to provide and maintain an acceptable level
of service in the face of faults and challenges to normal operation

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Fully Distributed: does not assume the previous existence of a central coordinator.

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

State: The amount of memory each node uses

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

No setup time at all! Need to run spanning
tree protocol before

routing

Convergence: the process of routers/switches agreeing on optimal routes for
forwarding packets and thereby completing the updating of their routing table

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Do the packets go where they
need to get efficiently — without
wasting resources at switches?

Trade-OffsBroadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

We know
packets will
reach their

destination…
but do they

take the
shortest path to

get there?

3

1

2
5

4

1, 0, 1

1, 1, 1

1,2,2

1,1,1

1,2,4

What if 3 wants to communicate with 4?
What if 5 wants to communicate with 3?

Real World
• We only use broadcast routing in very small networks.

• One rack in the machine room.

• A wing of one floor in GHC.

• To orchestrate the bigger network — across campus — we use
other algorithms.

• Why do you think that is?

Yet Another Algorithm…

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

3

1

2
5

4

1, 0, 1

1, 1, 1

1,2,2

1,1,1

1,2,4

Recall: Spanning Tree
There is exactly one node that every does have the shortest path to.

Each router computes its shortest distance to every
destination via any of its neighbors

How Distance-Vector (DV) Works
Each router maintains its shortest distance to every destination via each of
its neighbors

via B viaC

to B

to C

to D

A’s Route Table

Neighbor
(next-hop)

Destinations

distC(A, D): shortest  
distance from A to D via C

A

How Distance-Vector (DV) Works

A

B

C

D

Each router computes its shortest distance to every
destination via any of its neighbors

How Distance-Vector (DV) Works
Each router maintains its shortest distance to every destination via each of
its neighbors

via B viaC

to B 1

to C 1

to D

A’s Route Table

A

How Distance-Vector (DV) Works

A

B

C
1 m

s
1 ms

Link distance doesn’t have to be 1! Could be
some other value — e.g., latency of the link

D
3 ms

3 ms

2 m
s

Each router computes its shortest distance to every
destination via any of its neighbors

How Distance-Vector (DV) Works
Each router maintains its shortest distance to every destination via each of
its neighbors

via B viaC

to B 1 4

to C 4 1

to D 4 3

A’s Route Table

A

Each router computes its shortest distance to every
destination via any of its neighbors

How Distance-Vector (DV) Works

via B viaC

to B 1 4

to C 2 1

to D 4 3

A’s Route Table

A

min
dist

to A

to B

to C

to D

A’s distance  
 vector (DV)Routers send a summary of their tables to their neighbors.

This summary is called a “distance vector”

Update route to min(all of my B routes)

How Distance-Vector (DV) Works

via B viaC

to B 1 4

to C 2 1

to D 4 3

A’s Route Table

A

min
dist

to A 0

to B

to C

to D

A’s distance  
 vector (DV)

Update route to min(all of my C routes)

How Distance-Vector (DV) Works

via B viaC

to B 1 4

to C 2 1

to D 4 3

A’s Route Table

A

min
dist

to A 0

to B 1

to C 1

to D

A’s distance  
 vector (DV)

Update route to min(all of my D routes)

How Distance-Vector (DV) Works

via B viaC

to B 1 4

to C 2 1

to D 4 3

A’s Route Table

A

min
dist

to A 0

to B 1

to C 1

to D 3

A’s distance  
 vector (DV)

But, when we start the table is mostly empty…
We have to learn by receiving DV’s from others.

How Distance-Vector (DV) Works

via B viaC

to B 1 ∞
to C ∞ 1
to D ∞ ∞

A’s Route Table

A

B’s DV

But, when we start the table is mostly empty…
We have to learn by receiving DV’s from others.

How Distance-Vector (DV) Works

via B viaC

to B 1 ∞
to C ∞ 1
to D ∞ ∞

A’s Route Table

A

B’s DV
mindist

to A 1

to C 3

to D 2

But, when we start the table is mostly empty…
We have to learn by receiving DV’s from others.

How Distance-Vector (DV) Works

via B viaC

to B 1 ∞
to C 4 1
to D 3 ∞

A’s Route Table

A

B’s DV
mindist

to A 1

to C 3

to D 2

Distance Vector Routing: Summary
• Each router knows the links to its neighbors

• Each router has provisional “shortest path” to  
every other router -- its distance vector (DV)

• Routers exchange this DV with their neighbors

• Routers look over the set of options offered by their neighbors and
select the best one

• Iterative process converges to set of shortest paths

Tricky Question
• Let’s assume our DV algorithm runs in “rounds”

• In lock-step, all routers send out a DV to their neighbors

• Then they update their tables — all at the same time! — with the
new information they have received.

• Then, in lock-step, they all send out a DV at the same time. (Repeat)

• Q: How many “rounds” will it take for the DV algorithm to
converge?

Intuition
• Initial state: best one-hop paths

• One simultaneous round: best two-hop paths

• Two simultaneous rounds: best three-hop paths

• …

• Kth simultaneous round: best (k+1) hop paths

• Must eventually converge
• as soon as it reaches longest best path

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

I have some bad news.

Before the bad news… try it out.

via B viaC

to B 1 2
to C 4 3
to D 2 6

A’s Route Table

A

A’s DV
mindist

to B ?

to C ?

to D ?

What values does A announce
in it’s Distance Vector?

via B via D

to A 1 5
to B 1 7
to D 2 3

C’s Route Table D’s DV
mindist

to A 4

to B 2

to D 0

C

C receives the above DV from its
neighbor D. How does it change its

routing table?
(Assume the link weight from C to D is 3)

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree) + O(#nodes)

Yes

I have some bad news.

Distance Vector Algorithms suffer long
convergence times when link weights

increase or when links go down.

Running into trouble…

A

B Cvia A viaC
to A ? ?
to C ? ?
B’s Table

via B viaC
to B ? ?
to C ? ?
A’s Table

via A via B
to A ? ?
to B ? ?
C’s Table

4

50

1

Running into trouble…

A

B Cvia A viaC
to A 4 ?
to C ? 50
B’s Table

via B viaC
to B 4 ?
to C ? 1
A’s Table

via A via B
to A 1 ?
to B ? 50
C’s Table

4

50

1

Running into trouble…

A

B Cvia A viaC
to A 4 ?
to C ? 50
B’s Table

via B viaC
to B 4 ?
to C ? 1
A’s Table

via A via B
to A 1 ?
to B ? 50
C’s Table

4

50

1

DV
Update!

To A: 4
To C: 50

DV
Update!

To B: 4
To C: 1

DV
Update!

To A: 1
To B: 50

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 51
to C 54 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 51
to C 54 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

DV
Update!

To A: 4
To C: 5

DV
Update!

To B: 4
To C: 1

DV
Update!

To A: 1
To B: 5

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 6
to C 9 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 6
to C 9 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

These routes have
a loop in them.

Loopy Routes
• These route are fine under normal operations — because they don’t

get used.

• Why take the loopy route when you can take the direct path?

• But when link updates happen, bad things can happen.

• If a link becomes more expensive.

• If a link fails.

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 6
to C 9 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1
60

DO IT YOURSELF

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 5 50
B’s Table

via B viaC
to B 60 6
to C 9 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1
60

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 8
to C 110 1
A’s Table

via A via B
to A 1 101
to B 7 50
C’s Table

4

50

1
60

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 8
to C 110 1
A’s Table

via A via B
to A 1 101
to B 7 50
C’s Table

4

50

1
60

DV
Update!

To A: 51
To C: 50

DV
Update!

To B: 8
To C: 1

DV
Update!

To A: 1
To B: 7

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 8
to C 110 1
A’s Table

via A via B
to A 1 101
to B 9 50
C’s Table

4

50

1
60

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 8
to C 110 1
A’s Table

via A via B
to A 1 101
to B 9 50
C’s Table

4

50

1
60

DV
Update!

To A: 51
To C: 50

DV
Update!

To B: 8
To C: 1

DV
Update!

To A: 1
To B: 9

Running into trouble…

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 10
to C 110 1
A’s Table

via A via B
to A 1 101
to B 9 50
C’s Table

4

50

1
60

This is called the “count to
infinity” problem.

Root of the Problem: DV algorithm has no way to
detect and prevent loops.

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 6
to C 9 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

These routes have
a loop in them.

When will this slow-counting
finally end?

Count until we equal the “real” shortest path.

A

B Cvia A viaC
to A 60 51
to C 61 50
B’s Table

via B viaC
to B 60 51
to C 110 1
A’s Table

via A via B
to A 1 101
to B 52 50
C’s Table

4

50

1
60

Three Techniques for Mitigating Count to Infinity

• Split Horizon/Poison Reverse

• Maximum Path Lengths

• Pushdown Timers

Three Techniques for Mitigating Count to Infinity

• Split Horizon/Poison Reverse

• If I select a route I received from you in my distance vector,
instead I will report a path length of INFINITY back to you.

• Maximum Path Lengths

• Pushdown Timers

Flashback: What Does That Look Like?

A

B Cvia A viaC
to A ? ?
to C ? ?
B’s Table

via B viaC
to B ? ?
to C ? ?
A’s Table

via A via B
to A ? ?
to B ? ?
C’s Table

4

50

1

Running into trouble…

A

B Cvia A viaC
to A 4 ?
to C ? 50
B’s Table

via B viaC
to B 4 ?
to C ? 1
A’s Table

via A via B
to A 1 ?
to B ? 50
C’s Table

4

50

1

DV
Update!

To A: ∞
To C: 50

DV
Update!

To B: ∞
To C: 1

DV
Update!

To A: ∞
To B: 50

DV
Update!

To A: 4

To C: ∞

DV
Update!

To B: 4

To C: ∞
DV

Update!

To A: 1

To B: ∞

Running into trouble…

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 51
to C 54 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

Zoom In

Bvia A viaC
to A 4 51
to C 5 50
B’s Table

4

50

To A

To C

DV
Update!

To A: 4
To C: 5

DV
Update!

To A: ∞

To C: ∞

No Bad Loopy Routes!

A

B Cvia A viaC
to A 4 51
to C 5 50
B’s Table

via B viaC
to B 4 ∞
to C ∞ 1
A’s Table

via A via B
to A 1 54
to B 5 50
C’s Table

4

50

1

…for that graph.

A completely sad graph

1

1

1

1

B

A

C

Z

via A viaC
to A 1 2
to C 2 1
to Z 2 3

via A via B
to A 1 2
to B 2 1
to Z 2 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z ∞ ∞ 1

via A
to A 1
to B 2
to C 2

A completely sad graph

1

1

1

1

B

A

C

Z

A completely sad graph

1

1

1

B

A

C

Z

A completely sad graph

1

1

1

B

A

C

via A viaC
to A 1 2
to C 2 1
to Z 2 3

via A via B
to A 1 2
to B 2 1
to Z 2 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z ∞ ∞ ∞

A completely sad graph

1

1

1

B

A

C

via A viaC
to A 1 2
to C 2 1
to Z 2 3

via A via B
to A 1 2
to B 2 1
to Z 2 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z ∞ ∞ ∞

DV
Update!

To A: 1
To C: 1
To Z: 2

DV
Update!

To B: 1
To C: 1

To Z: ∞

DV
Update!

To A: 1
To B: 1
To Z: 2

B and C won’t advertise the route for Z to A
But they will advertise it to each other…

A completely sad graph

1

1

1

B

A

C

via A viaC
to A 1 2
to C 2 1
to Z ∞ 3

via A via B
to A 1 2
to B 2 1
to Z ∞ 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z ∞ ∞ ∞

A completely sad graph

1

1

1

B

A

C

via A viaC
to A 1 2
to C 2 1
to Z ∞ 3

via A via B
to A 1 2
to B 2 1
to Z ∞ 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z ∞ ∞ ∞

DV
Update!

To A: 1
To C: 1
To Z: 3

DV
Update!

To B: 1
To C: 1

To Z: ∞

DV
Update!

To A: 1
To B: 1
To Z: 3

And they will advertise the routes they learned from each other back to A.

A completely sad graph

1

1

1

B

A

C

via A viaC
to A 1 2
to C 2 1
to Z ∞ 3

via A via B
to A 1 2
to B 2 1
to Z ∞ 3

via B via C via Z
to B 1 2 ∞
to C 2 1 ∞
to Z 4 4 ∞

Here we go again…

In this case, we will count how
high?

Three Techniques for Mitigating Count to Infinity
• Split Horizon/Poison Reverse

• If I select a route I received from you in my distance vector,
instead I will report a path length of INFINITY back to you.

• Maximum Path Lengths

• Need to stop counting forever — set a path length limit to stop
things from counting forever.

• Pushdown Timers

Three Techniques for Mitigating Count to Infinity
• Split Horizon/Poison Reverse

• If I select a route I received from you in my distance vector, instead I will report a
path length of INFINITY back to you.

• Maximum Path Lengths

• Need to stop counting forever — set a path length limit to stop things from counting
forever.

• Pushdown Timers

• I’m not going to talk about these in lecture, instead I’m going to give you a tricky
question about them, either on the homework or the midterm.

Sorry not sorry I’m here to exercise your brain and make you
mentally BUFF.

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree) O(#nodes)

Yes

Very slow recovery due
to count to infinity.

Our Newest Friend:
Link State Algorithm

(e.g. OSPF)

A

B

C

D

E

Link State, In a Nutshell
• Everyone knows who they are connected to directly.

• Every node broadcasts a list of who they are connected to (and with
what link weight) to every other node in the network.

• Every node then can — locally — figure out what the entire network
graph is.

• Each node then uses a shortest-path algorithm to find its shortest path
to every possible destination.

• Each node then builds its own routing table.

A

B

C

D

E

I’m connected to
B and C

I’m connected to
A and C and D

I’m connected to
A and B and D

and E

I’m connected to
B and C and E

I’m connected to
C and D

I think animating all of these messages being
broadcast will give me carpal tunnel syndrome.

Imagine they are being broadcast.

A

B

C

D

E

Each node, through receiving these broadcast messages,
can then figure out the entire network structure.

A
Once a router knows the entire graph structure, it can easily
compute its shortest path to every other node in the network.

How do we compute A’s
shortest path to all other nodes?

DIJKSTRA’s algorithm

Edsgar Dijkstra
Turing Award Winner
(11 May 1930 – 6 August 2002)

• Finds the shortest path from a source to
all other destinations

• Runs in O(|E| + |V| log |V|) time
• for E edges and V vertices

• You should have learned this 15-210,
15-251, or literally a billion other
courses.

• If you haven’t learned it yet, come to OH and I’ll teach it to
you.
• It’s also on Wikipedia.
• It’s very cool — greedy algo!

A
Once A knows its shortest path to every destination, it creates a

routing table — what is the next hop for each destination?

To B? Forward to B

To C? Forward to C

To D? Forward to B

To E? Forward to C

That’s like… it.

Broadcast Network w/
Learning Switches

Broadcast Network w/
Learning Switches and

Spanning Tree

Resilience

Fully Distributed

State per Node

Convergence

If there is a route, the
packet will reach dest!

Need to recompute
spanning tree if failure

Yes Yes

Learning Switch:
O(#nodes)

Learning Switch:
O(#nodes) + Path to

Root: O(constant)

Routing Efficiency

No setup time at all! Need to run spanning
tree protocol before

routing

Broadcast Storms Still sends new
connections everywhere.

Shortest Path? Not Necessarily… Not Necessarily…

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree) + O(#nodes)

Yes

Very slow recovery due
to count to infinity.

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Yes

Packets sent directly to
their destination.

State per Node
(+ Routing Table)

Okay, I did the first two for you — fill
in the rest of this table w/ your

neighbor.

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Yes

Packets sent directly to
their destination.

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Yes

Packets sent directly to
their destination.

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Yes

Packets sent directly to
their destination.

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Routing Efficiency

Shortest Path?

Distance Vector
e.g RIP

Yes

Packets sent directly to
their destination.

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Yes

Packets sent directly to
their destination.

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

State per Node
(+ Routing Table)

One more point of comparison:
Switch Control Plane Complexity

A switch has two components
• “Data Plane”

• When a packet comes in, the data plane reads from a routing
table and decides where to send the packet. Then it sends the
packet out the correct port.

• “Control Plane”

• This is the “brains” of the switch — the part that decides what to
put into the routing table.

Control Plane

Data Plane

ROUTING TABLE
To B? Forward to B

To C? Forward to C

To D? Forward to B

To E? Forward to C

Send and receive updates
Decide what my new routes should be

WRITE to routing table

Receive packets.
READ from routing table to learn where I am supposed to send them

Send packet out of the correct port.

Resilience

Fully Distributed

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

Just select the “min” of all
the updates I have heard
from. (Dumb-ish Switch)

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

Just select the “min” of all
the updates I have heard
from. (Dumb-ish Switch)

Rebuild network topology,
run Dijkstra’s algorithm

over it.

£$€

State per Node
(+ Routing Table)

Last Routing Algorithm…

Centralized Routing
(aka “Software-Defined Networking”)

Centralized Routing, In a Nutshell
• Like Link State, every node knows who it is connected to.

• Instead of broadcasting to every other node, all nodes tell a special
controller node who they are connected to.

• The controller computes the best routes for everyone.

• The controller then tells every node what entries to put in their
routing tables.

A

B

C

D

E

I’m connected to
B and C

I’m connected to
A and C and D

I’m connected to
A and B and D

and E

I’m connected to
B and C and E

I’m connected to
C and D

A

B

C

D

E

I’m connected to
B and C

I’m connected to
A and C and D

I’m connected to
A and B and D

and E

I’m connected to
B and C and E

I’m connected to
C and D

Controller

A

B

C

D

E

Controller

A

B

C

D

E

Controller

A

B

C

D

E

Controller

Now each switch
remembers the new

routing table.

If a link or node fails, the
switches notify the

controller. The controller
re-computes each node’s
route and sends the new

routes out.

ROUTING TABLE
To B? Forward to B

To C? Forward to C

To D? Forward to B

To E? Forward to C

Resilience

Fully Distributed

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

Just select the “min” of all
the updates I have heard
from. (Dumb-ish Switch)

Rebuild network topology,
run Dijkstra’s algorithm

over it.

Centralized
e.g SDN

EXTREMELY SIMPLE

No distributed
convergence

O(C)
(Besides Routing Table)

No

Doesn’t recover at all if
controller(s) fail.

State per Node
(+ Routing Table)

Resilience

Fully Distributed

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

Just select the “min” of all
the updates I have heard
from. (Dumb-ish Switch)

Rebuild network topology,
run Dijkstra’s algorithm

over it.

Centralized
e.g SDN

EXTREMELY SIMPLE

No distributed
convergence

O(C)
(Besides Routing Table)

No

Doesn’t recover at all if
controller(s) fail.

State per Node
(+ Routing Table)

Fun Fact: Centralized Routing is
considered “state of the art” — why in
the world would people choose this

over other designs that are
fundamentally more resilient??

A

B

C

D

E

I want my network to work normally, EXCEPT B should NOT be allowed
to communicate with E.

Traditional routing algorithms are designed to achieve global
reachability — but can’t enforce policy requirements.

A

B

C

D

E

Traditional routing algorithms are designed to achieve global
reachability — but can’t enforce policy requirements.

I need to make sure all traffic going from my sales network to my
customer network goes through a firewall.

Customer
Sales

Network Policy
• You want to tell the network an “exception” or a “special case”

• Something to do other than “Let everyone talk to each other!”

• With fully distributed algorithms, you have to distribute the policy

• And different nodes have to behave differently! You might even need to
configure each node specially, depending on the policies.

• With a centralized controller, you configure the controller with your policy. The
controller makes the decisions, and the switches don’t have to be configured
specially to apply the policy.

• They just receive their routing tables from the controller.

Resilience

Fully Distributed

State per Node
(+ Routing Table)

Convergence

Control Plane
Complexity

Distance Vector
e.g RIP

Need to run DV before
routing — takes length of
longest best path time.

O(# switches * max node
degree)

Yes

Very slow recovery due
to count to infinity.

Link State
e.g OSPF

Flood network w/ updates
and then run Dijkstra:

O(|E| + |V| log |V|)

O(# edges)

Yes

Re-Run Dijkstra and
you’re good to go.

Just select the “min” of all
the updates I have heard
from. (Dumb-ish Switch)

Rebuild network topology,
run Dijkstra’s algorithm

over it.

Centralized
e.g SDN

EXTREMELY SIMPLE

No distributed
convergence

O(C)

No

Doesn’t recover at all if
controller(s) fail.

Network Policy
Support Hard Hard Easy

So what algorithm is best?

Well, it depends…
Resilience Fully Distributed

State per Node
(+ Routing Table)

Convergence

Control Plane
Complexity

Network Policy
Support

Routing Efficiency
Shortest Path?

Is my network big or small?
Do I have network policies to enforce?

Do I want cheap, dumb switches, or smart ones?

Do I need my network to survive a hurricane? earthquake? natural disaster?

In Practice
• My rack of servers in my research lab just uses broadcast routing!

• There are only six machines, connected by one switch.

• Most small setups like this just use broadcast routing.

My student Ray installing new network
cards in the machine room.

In Practice
• Google’s network spans across the whole world

• This is called a “WAN” — a “wide area network”

• Still administered by one organization — so it’s one network (not the
INTERnet). But it’s very big.

• This network is called B4 and it uses a COMBINATION of Link State Routing
(OSPF) and Centralized Routing (SDN)

• Just for fun: you can read about this network here: https://dl.acm.org/
citation.cfm?id=2486019

https://dl.acm.org/citation.cfm?id=2486019
https://dl.acm.org/citation.cfm?id=2486019

Systems Engineering Wisdom
“Engineering isn’t about perfect

solutions. It’s about doing the best you
can with limited resources.”

— Randy Pausch
CMU Professor, ACM Fellow
(October 23, 1960 – July 25, 2008)

You have survived basic routing!

• We will learn a few more routing algorithms later in this class.

• But now you are read to move on to learn about…

• THE INTERNET!!!!

• Any questions before we move on?

Questions? Comments? Concerns? Feedback?

Fill out an anonymous notecard on your way out.

