1

Solution: Internet Protocol (IP)

- Inter-network connectivity provided by the Internet protocol
- Hosts use Internet Protocol to send packets destined across networks.
- IP creates abstraction layer that hides underlying technology from network application software
- · Allows range of current & future technologies
- WiFi, traditional and switched Ethernet, personal area networks, ...

What are the Goals?

- LANs: "Connect hosts" \rightarrow switching:
 - Only has to scale up a "LAN size"
 - · Availability
- Internet: "Connect networks" \rightarrow routing:
- Scalability
- Manageability of individual networks essential to achieving scalability
- Availability
- Affects addressing, protocols, routing

Outline

- · IP design goals
- Traditional IP addressing
- Addressing approaches
- Class-based addressing
- Subnetting
- CIDR
- Packet forwarding

Addressing and Forwarding

- · Flat address space with smart routers
- Packets carry a destination address
- Routers knows how to reach every host
- · Flat address space with dumb routers
- · Packet header specifies the path the packet should take
- · Hierarchical address space
- · What we actually do in IP our focus today
- Table of circuit identifiers
- · More on this later in the course

Hierarchical Addressing

- · Flat addresses one address for every host
- My laptop: 1234-5067-8901
- Does not scale router table size explodes 4.4 Billion and counting!
- · Hierarchical add structure
- Postal address: US / PA / Pittsburgh / CMU / Gates / 9th fl / Steenkiste
- Common "trick" to simplify forwarding, reduce forwarding table sizes
- What type of hierarchy do we need for the Internet?
- · How many levels?
- · Same hierarchy depth for everyone?
- Who controls the hierarchy?

IP Addresses (IPv4)

Unique 32-bit number associated with a host

$00001100 \ 00100010 \ 10011110 \ 00000101$

Represented with the "dotted quad" notation

- Always dotted-quad notation
- · Always network/host address split
- · But nature of that split has changed over time

Original Internet Addresses

- · First eight bits: network component
- Last 24 bits: host component

Assumed 256 networks were more than enough!

IP Address Structure, ca 1981

Routers know how to get to network ID, but not individual hosts.

IP Route Lookup, ca 1981

- · Router extracts address class and network ID from IP address
- · Forwarding table structure reflects address structure
- · Logically, a separate forwarding table for each address class
- · For unicast address (classes A-C) entries contain
- The prefix for a destination network (length 8/16/24)
- Information on how to forward the packet, e.g., exit port, ..
- www.cmu.edu address 128.2.11.43
- Class B address class + network is 128.2
- Lookup 128.2 in forwarding table for class B
- Tables are still large!
- 2 Million class C networks

Outline

- IP design goals
- · Traditional IP addressing
- Addressing approaches
- · Class-based addressing
- Subnetting
- CIDR
- Packet forwarding

Subnetting

- · Adds another layer to hierarchy
- · Network can be split into multiple subnets
- · Prefix of the subnet is Network and (variable length) Subnet identifiers
- · Subnetting is done internally in the organization
- · It is not visible outside important for management

Subnet Addressing RFC 917 (1984)

- · The Internet was growing and some "LANs" were very big
- · Can no longer be managed as a single LAN
 - · Too many hosts spread across multiple departments
 - Some protocols become inefficient
- · Need a simple way to partition large networks
 - Partition into multiple IP networks with different (subnet) prefixes
 - · Subnets are connected by routers how do they learn subnet length?
- · CMU case study in RFC
 - Chose not to adopt concern that it would not be widely supported ©

IP Address Problem (1991)

- · Address space depletion: class-based addressing is inefficient
- Suppose you need 2¹⁶ + 1 addresses?
- · Class A block is too big for all but a few domains
- Class C block too small for many domains but they don't need a class B
- · Class B address pool was being allocated at a high rate
- Many allocated address block are sparsely used
- · IETF developed a strategy based on three solutions
- Switch to a "classless" addressing model this lecture
- Network address translation (NAT) next week
- Definition of IPv6 with larger IP addresses next week

Today's Addressing: CIDR

- CIDR = Classless Interdomain Routing
- · Idea: Flexible division between network and host addresses
- Not limited to three sizes 8/16/24
- · Prefix can be any size
- Similar to subnets!
- · Motivation: more efficient use of the IP address space
 - · But seems hard to manage!
 - · How do we limit the size of forwarding tables

CIDR (example)

- · Suppose a network has fifty computers
 - Allocate 6 bits for host addresses (since 2⁵ < 50 < 2⁶)
- Remaining 32 6 = 26 bits as network prefix
- Flexible boundary means the boundary must be explicitly specified with the network address!
- Informally, "slash 26" → 128.23.9/26
- Formally, prefix represented with a 32-bit mask: 255.255.255.192 where all network prefix bits set to "1" and host suffix bits to "0"
- · This works for people, but how about prefixes in routers and packets?

IP Addressing: Hierarchical

- · CIDR allows more efficient use of the IP address space
 - · Helps (at least for a while) with the high demand for IP addresses
- · But how does this help with the growth of forwarding tables?
 - · Number of destination networks is growing as well!
- · Solution has two complementary parts:
- Allocation of IP addresses is done hierarchically based on network topology
- Routers will combine forwarding entries for destinations "in the same general direction"

Address Allocation is Done Hierarchically

- · Historically assignment of prefixes was "first come first serve"
- With CIDR: Internet Corporation for Assigned Names and Numbers (ICANN) gives large blocks to...
- Regional Internet Registries, such as the American Registry for Internet Names (ARIN), which give blocks to...
- · Large institutions (ISPs), which give addresses to ...
- · Individuals and smaller institutions
- · FAKE Example:

ICANN → ARIN → AT&T → UCB → EECS

CIDR Implication: Longest Prefix Match

· How to deal with multi-homing, legacy addresses, ...

How LPM Works

- Routing protocols aggregate forwarding entries to reduce table size
 - E.g., 3 forwarding entries A/B/C 01010011.xy/10 can be combined into 01010011/8 if they forward through the same port
 - · A fourth entry D that uses a different egress port has its own entry
- · Works correctly because of longest prefix match (LPM)
- Packets to A/B/C will match only the 01010011/8
- · Packets to D will match entries but will prefer the short "/10" entry
- · Legacy prefixes (e.g., 128.2) also often have their own entry

Filling in Some Router Details

- · How do routing protocols learn the prefix size?
- Routing advertisements include the prefix size
- For stub networks (subnetting): routers are configured by admin
- But a router now needs ~30 forwarding tables?
- No forwarding uses a single tree data structure (called a trie)
- Very efficient algorithms exist for look up both in HW and SW
- · How do routers know the prefix size for destination addresses?
- They do not need them because of how LPM look up works

