9/14/2019

Too Much of a Good Thing?

- Hosts have a

15-441/641: Computer Networks . host name _
Domain Name System - P address

i - MAC address ‘
15-441 Spring 2019 i Sosci
Profs Peter Steenkiste & Justine Sherry i esslon

. Thereis a reason .. '

Carnegie . Remember?

Fall 2019~ Mellon - But how do we translate?
https://computer-networks.github.io/sp19/

University

IP to MAC Address Translation Caching ARP Entries

- How does one find the Ethernet address of a IP host? + Efficiency Concemn

. Address Resolution Protocol - ARP - Would be very inefficient to use ARP request/reply every time

- Broadcast search for IP address need to sentlj IP. message to machine]
. E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to Ethernet + Bach Host Maintains Cache of ARP Entries
broadcast (all FF address) - Add entry to cache whenever you get ARP response
- Destination responds (only to requester using unicast) with . “Soft state”: set timeout of ~20 minutes

appropriate 48-bit Ethernet address

- E.g, “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to
0:c0:4f:d:ed:c6

ARP Cache Example

- Show using command “arp -a”

Interface: 128.2.222.198 on Interface 0x1000003
Internet Address Physical Address Type

128.2.20.218 00-b0-8e-83-df-50 dynamic
128.2.102.129 00-b0-8e-83-df-50 dynamic
128.2.194.66 00-02-b3-8a-35-bf dynamic
128.2.198.34 00-06-5b-£3-5£-42 dynamic
128.2.203.3 00-90-27-3c-41-11 dynamic
128.2.203.61 08-00-20-a6-ba-2b dynamic
128.2.205.192 00-60-08-1le-9b-fd dynamic
128.2.206.125 00-d0-b7-c5-b3-£3 dynamic
128.2.206.139 00-a0-c9-98-2c-46 dynamic
128.2.222.180 08-00-20-a6-ba-c3 dynamic
128.2.242.182 08-00-20-a7-19-73 dynamic
128.2.254.36 00-b0-8e-83-df-50 dynamic

9/14/2019

Subnetting is an Option

- Subnetting!
- Break up network into networks

connected by router Network ' > Network
\
- Limits the scope of ARP roster —— " Internet
requests/responses inside smaller \
L2 networks]
- But not always a good always a
good idea N1 N2 N3 N4 N5

- Extra complexity, management
overhead, cost, ...

- Example: WiFi network

&

Challenge: Broadcast!

- Overhead scales (roughly) as N2 for an N host network

- N host does an ARP broadcast for each (new) destination

- Each broadcast is delivered to N hosts Network

Network

- Remember the solution? A //lnternet
- Subnetting!

Router

- Break up network into networks

connected by router
BIG Network

- Not always a good idea

- Extra complexity, management
overhead, cost, ...

4

Proxy ARP

- Limit the scope of ARP requests/responses inside an L2
+ Proxy ARP makes it look like ne network:

Network Network

- Host1in N1 sends ARP for host 2 in N2
N

- Proxy ARP looks up MAC address router —— " Internet

Proxy ARP

- May require discovery using ARP
- Responds to host 1's request
- Acts as proxy for host 2 NY N2 N3 N4

- Also forwards packets from host 1
to host 2 at layer 2

- Acts as a switch

N5

&

- Host addresses: e.g., 169.229.131.109

- Host names: e.g., linux.andrew.cmu.edu

- The Domain Name System (DNS) is how we map from one to the

Host Names & Addresses

- a number used by protocols
- conforms to network structure (the “where”)

- mnemonic name usable by humans
- conforms to organizational structure (the “who”)

other

9/14/2019

- adirectory service for hosts on the Internet *

DNS provides Indirection

Addresses can change underneath

- Move www.cnn.com to a new IP address

- People and applications are unaffected

Name can map to multiple IP addresses

- Enables load-balancing

Multiple names for the same address

- E.g., many services (mail, www, ftp) collocated on the same machine

Allowing “host” names to evolve into “service” names *

Why bother?

- Convenience
- Easier to remember www.google.com than 74.125.239.49

- Provides a level of indirection!
- Decoupled names from addresses
- Many uses beyond just naming a specific host

DNS: Early days

- Mappings stored in a hosts.txt file (in /etc/hosts)
+ maintained by the Stanford Research Institute (SRI)
- new versions periodically copied from SRI (via FTP)
- As the Internet grew this system broke down
+ SRl couldn’'t handle the load
- conflicts in selecting names

- hosts had inaccurate copies of hosts.txt

« The Domain Name System (DNS) was invented to fix this

4

9/14/2019

Obvious Solutions (1) Goals?

Why not centralize DNS? - Scalable

- Distant centralized database + Mmany names

. Traffic volume + many updates

- many users creating names

- Single point of failure .
)) + many users looking up hames
- Single point of update . Highly available

- Single point of control - Correct

+ no naming conflicts (uniqueness)

- Doesn’t scale! - consistency
+ Lookups are fast

How? Key idea: hierarchical distribution

- Partition the namespace — Hierarchy! Three intertwined hierarchies

. Distribute the administration of each name space partition - Hierarchical namespace

- Autonomy to update a network’s own (machines’) names + As opposed to original flat namespace

- Translation of cmu.edu names is done by CMU . Hierarchically administered

- Don't have to track everybody’s updates . As opposed to centralized administrator
- Distribute name resolution for each partition
- Hierarchy of servers

- How should we partition things? } - As opposed to centralized storage }

9/14/2019

DNS Design: Zone Definitions

Hierarchy Definitions

» Each node in hierarchy stores a list of
names that end with same suffix
« Suffix = path up tree
* E.g., given this tree, where would

» Zone = contiguous section of name space
« E.g., Complete tree, single node or subtree
* A zone has an associated set of name

servers
« Must store list of names and tree links

DNS Design:

root
\\\ca

org —
net edu com uk

root
org — ’ J
net edu com uk following be stored:
B T _ ¢ Fred.com //[\\\
gwu uch” cmu bu mit « Fred.edu gwu ucb” / cmu “Nbu mit
cs ece * Fred.cmu.edu cs ec Subtree
* Fred.cmcl.cs.cmu.edu @ - Single node
Complete
Tree

cn‘1cl
* Fred.cs.mit.edu

Server Hierarchy Server Hierarchy
- Every server knows the address of the root name server

Root servers know the address of all TLD servers

- Top of hierarchy: Root servers
Location hardwired into other DNS servers

- Next Level: Top-level domain (TLD) servers o .
- An authoritative DNS server stores name-to-address mappings (“resource
records”) for all DNS names in the domain that it has authority for

. .com, .edu, .uk, etc.

- Managed professionally
- Each server stores a subset of the total DNS database

- Each server can discover the server(s) responsible for
any portion of the hierarchy ’

- Bottom Level: Authoritative DNS servers
- Actually store the name-to-address of devices mapping

Maintained by the corresponding administrative authority

4

DNS Root

- Located in Virginia, USA

Verisign, Dulles, VA

DNS Root Servers

e 13 root servers (labeled A-M; see http://www.root-servers.org/)
e Each server is replicated via any-casting

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations)

K RIPE London (plus 16 other locations)

| Autonomica, Stockholm (plus 29
other locations)
E NASA Mt View, CA
F Internet Software
Consortium,

Palo Alto, CA M WIDE Tokyo

(and 37 other \ocﬁﬁns-}\ plus Seoul, Paris,
San Francisco
B USC-ISI Marina del Rey, CA ™
L ICANN Los Angeles, CA ‘
¥
/

9/14/2019

DNS Root Servers

+ 13 root servers (labeled A-M; see http://www.root-servers.org/)

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD
G US DoD Vienna, VA

K RIPE London

H ARL Aberdeen, MD
4 Verisign | Autonomica, Stockholm
E NASA Mt View, CA
F Internet Software -, ,f" e
Consortium

Palo Alto, CA| M WIDE Tokyo

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA ‘
7

Anycast in a nutshell

- Routing finds shortest paths to destination

- What happens if multiple machines advertise the same address?

- The network will deliver the packet to the closest machine with that
address

- This is called “anycast”
- Very robust
- Requires no modification to routing algorithms

Programmer’s View of DNS

- Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures:

/* DNS host entry structure */
struct addrinfo {
int ai_family; I* host address type (AF_INET) */
size_t ai_addrlen; /* length of an address, in bytes */
struct sockaddr *ai_addr; /* address! */
char *ai_canonname; /* official domain name of host */
struct addrinfo *ai_next; /* other entries for host */

b

- Functions for retrieving host entries from DNS:
- getaddrinfo: query key is a DNS host name.
- getnameinfo: query key is an IP address.

4

DNS Records

‘ RR fO rm at (class, name, value, type, ttl) ‘

DB contains tuples called resource records (RRs)
« Classes = Internet (IN), Chaosnet (CH), etc.
« Each class defines a name-value binding based on its type

FORIN class:

+ Type=A « Type=CNAME
name is hostname * name is an alias name for some
“canonical” (the real) name
 value is canonical name
- Type=NS « Type=MX
name is domain (e.g. foo.com) + value is hostname of mailserver
associated with name

value is IP address

value is name of authoritative name
server for this domain

9/14/2019

- Different kinds of mappings are possible:

Properties of DNS Host Entries

- Simple case: 1-1 mapping between domain name and IP addr:
- kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

- Multiple domain names maps to the same IP address:
- eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

- Single domain name maps to multiple IP addresses:
+ www.google.com maps to multiple IP addresses

- Some valid domain names don’t map to any IP address:
- For example: cmcl.cs.cmu.edu

- Example: you just created company “FooBar”
- You get a block of IP addresses from your ISP

- Register foobar.com at registrar (e.g., NameCheap)

- You store resource records in your server dns1.foobar.com

Inserting RRs into DNS

- say 212.44.9.128/25

- Provide registrar with names and IP addresses of your
authoritative name server(s)

+ The registrar inserts RR pairs into the .com TLD server:
- (foobar.com, dns1.foobar.com, NS)
- (dns1.foobar.com, 212.44.9.129, A)

- e.g., type A record for www.foobar.com
- e.g., type MX record for foobar.com

Using DNS (Client/App View)

- Two components
- Resolver software on hosts

- Local DNS servers

- Each host has a resolver

- Typically a library that applications can link to

- Client application

- Obtain DNS name (e.g., from URL) by calling resolver
- This triggers a DNS request to the local DNS server

4

9/14/2019

root servers

local

DNS server
(mydn:mu.edu) .edu servers
nyu.edu
servers

e
DNS client
(me.cs.cmu.edu)

4

Servers/Resolvers

- Name servers: generally responsible for some zone

- Answers queries about their zone

- Local DNS server (“default name server”) has two responsibilities

- Answer queries about the local zone

- Also do lookup of distant host names for local hosts

- Can cache the response for other local hosts!

- Clients configured with the default DNS server’s address or
they learn it via a host configuration protocol

4

local

root servers

DNS server \

(mydns.cmu.edu)

.edu servers

4 \
lL’L
3?/ nyu.edu
g servers

V)

2 .
“ DNS client
(me.cs.cmu.edu)

4

root
DNS server
o
local
DNS server
(mydns.cmu.

.edu servers

2 \
lL/L
3?/ nyu.edu
g servers

0% .
“ DNS client
(me.cs.cmu.edu)

4

recursive DNS query root
DNS server
[
local
DNS server
(mydns.cmu.
[) .edu servers

4,
@af\\\ \%\
K e
% . nyu.edu S€rvers
2 .
“ DNS client
(me.cs.cmu.edu)

9/14/2019

root
DNS server
o
local
DNS server
(mydns.cmu.
[) .edu g#\?
42,
l"’z
3?/ nyu.edu
S, servers
% "DNS client
(me.cs.cmu.edu)
root
DNS server
o
local
DNS server
(mydns.cmu.edu)
[) .edu servers
\ o
.DNS | nyu.edu servers
client
(me.cs.cmu.edu)

iterative DNS query root
DNS server
o
local
DNS server

(mydns.cmu.’//:.
[) 4_//.edu servers
\\.
.DNS lient nyu.edu servers
clien
(me.cs.cmu.edu)

Per-domain availability

- DNS servers are replicated
- Primary and secondary name servers required
- Name service available if at least one replica is up
- Queries can be load-balanced between replicas

- Try an alternate servers on timeout

- Exponential backoff when retrying the same server

4

9/14/2019

Goals — how are we doing?

- Scalable

+ many names

+ many updates

- many users creating names

- many users looking up names
- Highly available

Scalability: DNS Caching

- Caching of DNS responses at all levels
- Reduces load at all levels
- Reduces delay experienced by DNS client
+ How DNS caching works
- DNS servers cache responses to queries
- Responses include a “time to live” (TTL) field
- Server deletes cached entry after TTL expires
- Why caching is effective
- The top-level servers very rarely change
- Popular sites are visited often
- local DNS server often has the information cached

4

9/14/2019

Negative Caching

- Remember things that don’t work

- Misspellings like www.cnn.comm and www.cnnn.com

- E.g., broken URLs in web pages, people making he same typo, ..
- These can take a long time to fail the first time

- Good to remember that they don’t work

- ... so the failure takes less time the next time around

- Negative caching is optional

4

Goals — how are we doing?

- Scalable

+ many names
« many updates

+ many users creating names

+ many users looking up hames

- Highly available
- Correct

+ no naming conflicts (uniqueness)

- consistency
+ Lookups are fast

DNS Message Format

Identification Flags

12 bytes No. of Questions No. of Answer RRs

No. of Authority RRs No. of Additional RRs

Name, type fields

for a query——— Questions (variable number of answers)

RRs in response to

query | . Answers (variable number of resource records)

Records for . .
authoritative I Authority (variable number of resource records)

servers

Additional “helpful—Additional Info (variable number of resource records)
info that may be
used

DNS Header Fields

- Identification

- Used to match up request/response

- Flags

- 1-bit to mark query or response
- 1-bit to mark authoritative or not
- 1-bit to request recursive resolution

- 1-bit to indicate support for recursive resolution

4

How can one attack DNS?

- Impersonate the local DNS server
- give the wrong IP address to the DNS client

local
DNS server
o @ Persa (the impersonator)

4 N
>
JL"*\ w/
‘Q,
%

%, @ DNS client

9/14/2019

How can one attack DNS?

- Impersonate the local DNS server
- give the wrong IP address to the DNS client

- Denial-of-service the root or TLD servers
- make them unavailable to the rest of the world

- Poison the cache of a DNS server
- trick the server into caching the wrong IP address

4

« Denial-of service attack on the root or TLD server
- flood the server with packets

root
DNS server

o
local .edu TLD
DNS DNS server
sery
- / :
o
@ DNsclient Denis (the denial-of-
service attacker)

4

9/14/2019

- Poison the cache of a DNS server

- trick the server into caching the wrong IP address

local
DNS server

.‘\\)' Casha

@ DNSclient

Enter: DNSSEC

An extension to DNS to
improve DNS security.

Enter DNSSEC

Extension to DNS to improve DNS security

- provides message authentication and integrity verification through
cryptographic signatures

+ You know who provided the signature

- No modifications between signing and validation
- It does not provide authorization
- It does not provide confidentiality
- It does not provide protection against DDOS

4

* Second-level domains (SLDs) vary widely:

DNSSEC: Deployment Status

89% of top-level domains (TLDs) zones signed.
* ~47% of country-code TLDs (ccTLDs) signed.

* Over 2.5 million .nl domains signed (~45%) (Netherlands). [1]
* ~88% of measured zones in .gov are signed.

* Over 50% of .cz (Czech Republic) domains signed.

* ~24% of .br domains signed (Brazil). [2]

* While only about 0.5% of zones in .com are signed, that
percentage represents ~600,000 zones.

DNSSEC: Deployment Status

9/14/2019

Important Properties of DNS

- Easy unique, human-readable naming
- Hierarchy helps with scalability
- Caching lends scalability, performance

- Not strongly consistent
- Trust model has some problems!

