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Warmup: BGP Refresh
•X is a small university network with two providers, A and B. 

•A’s provider is C.  

•B’s provider is D. 

•C’s provider is Z. 

•D’s provider is Z. 

What AS path does traffic take from A to B? 

•Why?
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Gao-Rexford Conditions

• If I receive a route announcement from my customer, I will announce 
that route to my customers, peers, and my providers. 

• If I receive a route announcement from my peer, I will announce that 
route only to my customers. 

• If I receive a route announcement from my provider, I will announce 
that route only to my customers.

I only want to carry traffic that will earn me a profit!



Gao-Rexford: “Scrooge McDuck Policy”
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Another BGP Warmup

•A’s provider is Z. A peers with B.  

•B’s provider is Z. B peers with A and C. 

•C’s provider is Y. C peers with B. 

•Z’s provider is X. 

•Y’s provider is X. 

What AS path does traffic take from A to C? 

•Why?
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Follow the money!



Today
• Starting three lectures on the transport layer. 

• The transport layer is currently one of my primary areas of research. 

• I’ll teach you the basics…. 

• For lecture #3, our TA Ranysha is going to tell you about her PhD 
research on modern transport on the Internet. 

• Including new protocols from companies like Google and Akamai



Quick Review



Transport Layer in the Internet Model
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Why a transport layer? 

• IP packets are addressed to a host but end-to-end communication 
is between application processes at hosts 
• Need a way to decide which packets go to which applications 

(multiplexing/demultiplexing)
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Why a transport layer? 
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Role of the Transport Layer

• Communication between application processes 
• Mux and demux from/to application processes 
• Implemented using ports 

• You know this from Liso project!



Why a transport layer? 
• IP packets are addressed to a host but end-to-end communication 

is between application processes at  hosts 
• Need a way to decide which packets go to which applications (mux/

demux) 

• IP provides a weak service model (best-effort) 
• Packets can be corrupted, delayed, dropped, reordered, duplicated  
• No guidance on how much traffic to send and when 
• Dealing with this is tedious for application developers



Role of the Transport Layer

• Communication between application processes 

• Provide common end-to-end services for app layer [optional] 
• Reliable, in-order data delivery 
• Well-paced data delivery 

• too fast may overwhelm the network 
• too slow is not efficient



Role of the Transport Layer

• Communication between processes 

• Provide common end-to-end services for app layer [optional] 

• TCP and UDP are the common transport protocols 
• also SCTP, MTCP, SST, RDP, DCCP, … 



Context: Applications and Sockets
• Socket: software abstraction by which an application process exchanges 

network messages with the (transport layer in the) operating system  
• socketID = socket(…, socket.TYPE) 
• socketID.sendto(message, …)   
• socketID.recvfrom(…)  

• Two important types of sockets 
• UDP socket: TYPE is SOCK_DGRAM  
• TCP socket: TYPE is SOCK_STREAM



Role of the Transport Layer

• Communication between processes 

• Provide common end-to-end services for app layer [optional] 

• TCP and UDP are the common transport protocols 

• UDP is a minimalist, no-frills transport protocol 
• only provides mux/demux capabilities



UDP: User Datagram Protocol 
• Lightweight communication between processes 

• Avoid overhead and delays of ordered, reliable delivery 
• UDP described in RFC 768 – (1980!) 

• Destination IP address and port to support demultiplexing 
• Optional error checking on the packet contents 

• (checksum field = 0 means “don’t verify checksum”)

 SRC port  DST port

checksum length

DATA



What is a checksum?
• Wikipedia: “A checksum is a small-sized datum derived from a block of digital 

data for the purpose of detecting errors that may have been introduced during 
its transmission or storage.” 

• Simplest checksum:  

• Take every, say, 32-bit word and XOR them all together 

• Append the result to the end of the packet (adds overhead!) 

• At the receiver, re-compute the XOR. If it does not match the appended 
checksum, you know some of the data has been corrupted. 

• There is a huge literature on “coding” checksumming schemes.

Take a class from Prof. Vinayak to learn 
more about information theory and how 

to use it to build systems!



UDP

• That’s literally the entire protocol.  

• If a packet gets lost, it’s up to the application developer to decide 
what to do about it.



Role of the Transport Layer
• Communication between processes 

• Provide common end-to-end services for app layer [optional] 

• TCP and UDP are the common transport protocols 

• UDP is a minimalist, no-frills transport protocol 

• TCP is the whole-hog protocol 
• offers apps a reliable, in-order, bytestream abstraction 
• with congestion control  
• but no performance guarantees (delay, bw, etc.)



Why a transport layer? 

• IP packets are addressed to a host but end-to-end communication 
is between application processes at  hosts 
• Need a way to decide which packets go to which applications (mux/

demux) 

• IP provides a weak service model (best-effort) 
• Packets can be corrupted, delayed, dropped, reordered, duplicated 

TCP, literally the next three lectures



Getting this right is *hard* and hence 
it is an active area of research.



Let’s get started understanding why this is 
challenging… 

I need two volunteers.



Team Structure
• I have ten beanbags labeled 1 to 10. 

• Your job is to transport them from one end of the classroom to the other. 

• Like Professor Sherry, you must throw them — you can’t simply carry them 
to the other side of the classroom. 

• Unlike Professor Sherry, you may have better aim. 

• Or they might fall to the ground. If they fall, you can’t pick them back up! 

• If you determine that a beanbag is lost, you can grab another beanbag, 
label it with the missing number, and re-transmit it.



Team Structure
• Two of you are the end points (sender/receiver) who decide what packets to 

transmit, and whether or not to re-transmit. The endpoints must face the wall 
— they can’t see the network. But, they can talk! 

• The other two represent the network in the middle. You can see everything, 
but you can’t talk or signal in any way to the endpoints.  

• The sender will will hold up a bean bag in the air if they have a bag they 
want you deliver. 

• They receiver will hold up their hand so you can put beanbags into it. 

• But otherwise no talking! Just try not to let the beanbags fall!



PRIZES

• The winner is whoever successfully gets beanbags numbered 1…10 
to their receiver first. 

• Winning team gets t-shirts 

• Losing team still gets candy!



Back to the real Internet…



How do we tell that a packet has been lost?

• The packet was sent a long time ago, but still has not arrived 

• Packet arrives at receiver, but data does not match its checksum



A basic protocol: Stop and Wait
Sender Receiver



A basic protocol: Stop and Wait
Sender Receiver

Packet 1

Each packet carries a sequence number identifying it 
as the first, second, third… etc packet.



A basic protocol: Stop and Wait
Sender Receiver

Packet 1

ACK 1

ACK stands for ACKNOWLEDGED 
Include sequence number for the packet being 

acknowledged.



A basic protocol: Stop and Wait
Sender Receiver

Packet 1

ACK 2
Packet 2

ACK 2



How do we tell that a packet has been lost?



A basic protocol: Stop and Wait
Sender Receiver

Packet 3

Set timer… Packet 3

ACK 3

Retransmit if I haven’t received an ACK by the time 
the timer goes off.



How do we tell that a packet has been lost?

• The packet was sent a long time ago, but still has not arrived 

• Packet arrives at receiver, but data does not match its checksum



A basic protocol: Stop and Wait
Sender Receiver

Packet 5

Set timer… Packet 5

ACK 5

Just ignore it….

$#!@$@



Stop-and-Wait: Summary
• Sender:

• Transmit packets one by one. Label each with a sequence number. Set timer 
after transmitting. 

• If receive ACK, send the next packet. 

• If timer goes off, re-send the previous packet. 

• Receiver:

• When receive packet, send ACK. 

• If packet is corrupted, just ignore it — sender will eventually re-send.



Why do we need sequence numbers? 
Could we use Stop-and-Wait without 

them?



Intuitive Need for Sequence Numbers…
1 2 3 4…

1
2
3

4…
How do we put 

the file back 
together again 

after 
packetization?

But maybe we could just standardize this —- say each packet is in row-order starting from top 
left. Would we still need sequence numbers for the protocol?



We do, and here’s why…
Sender Receiver

Packet 3 is sent

ACK

Packet 3 is retransmitted



Sequence numbers are needed 
for reliability.



What’s wrong with stop-and-
wait?



It’s slow!



How might we fix it?



Making Stop and Wait faster…
Sender Receiver

Packet 1

ACK 1
Packet 2
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Packet 4

ACK 4



…and faster…
Sender Receiver

Packet 1

ACK 1

Packet 2

ACK 2

Packet 3

ACK 3



Key idea: “windowing”



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Windowing improves the efficiency of a transport protocol. 

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

Window size = 3

Send!



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Windowing improves the efficiency of a transport protocol. 

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

ACK 1



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Windowing improves the efficiency of a transport protocol. 

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Windowing improves the efficiency of a transport protocol. 

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

ACK 2



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Windowing improves the efficiency of a transport protocol. 

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



Approach #1: Go Back N
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Packet 2
Packet 3
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Not the expected 
packet — 3 — so 

ignore.
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Go Back N
• Sender:

• Send up to {n} packets at a time. Set a timeout timer for every packet. 

• On receiving an ACK, slide the window forward. 

• On timeout, retransmit the timeout packet, and everything after it in the window. 

• Receiver:

• On receive next expected sequence number, send an ACK 

• If packet is corrupted or has an unexpected sequence number, ignore it.



We don’t use Go Back N on the 
Internet… why not?



Loss recovery *works*… but it’s 
not very efficient.



Approach #1: Go Back N
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Ignoring these packets is 

wasteful!



Approach #2: Selective Repeat



Approach #2: Selective Repeat
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Window moves forward



Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9



Approach #2: Selective Repeat
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Approach #2: Selective Repeat
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Approach #2: Selective Repeat
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Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Missing packet 3 stops the 
window from moving forward



Approach #2: Selective Repeat
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Approach #2: Selective Repeat
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Selective Repeat
• Sender: 

• Send packets from the window. Set timeout for each packet. 

• On receiving ACKs for the “left side” of the window, slide forward. 

• Send packets that have now entered the window. 

• On timeout, retransmit only the timed out packet 

• Receiver

• Keep a buffer of size of the window.  

• On receiving packets, send ACKs for every packet. 

• If packets come in out of order, just store them in the buffer and send ACK anyway.



Receive Buffer

TCP

Liso Server

1 2



Receive Buffer

TCP

Liso Server
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read()



Receive Buffer

TCP
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Receive Buffer

TCP

Liso Server
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Receive Buffer

TCP

Liso Server
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Receive Buffer

TCP
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Receive Buffer

TCP

Liso Server
read()
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Receive Buffer

TCP

Liso Server3 4

6 7 8 9 10 11



Receive Buffer

TCP

Liso Server

Application can’t 
take in any packets 
until missing packet 

comes in

3 4

6 7 8 9 10 11



Handling Loss

• Go-Back-N and Selective Repeat both handle loss, while allowing 
lots of packets in flight. 

• Selective repeat is more efficient at recovering from failure.



What does TCP Do?
• TCP is like Selective Repeat, but… 

• It uses cumulative ACKs 

• Instead of using per-packet sequence numbers, it uses per-byte 
sequence numbers. 

• e.g. if packet #1 has 1000 bytes of payload data, packet #2 will 
have the sequence number 1001 

• It implements fast recovery (we’ll discuss this on Tuesday)



Basic ACKs vs Cumulative ACKs

• Basic ACKs: “ACK n” means “I just received packet n” 

• Cumulative ACKs: “ACK n” means, “I have received all packets up 
until n-1, I am now expecting to get n” 

• Why might a cumulative ACK be better than a “Basic ACK”?



Cumulative ACK
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Cumulative ACK: Recover from Lost ACKs Easily
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK2
ACK 3

Packet 6

Packet 7

ACK 4
ACK 5
ACK 6



What does TCP Do?
• TCP is like Selective Repeat, but… 

• It uses cumulative ACKs 

• Instead of using per-packet sequence numbers, it uses per-byte 
sequence numbers. 

• e.g. if packet #1 has 1000 bytes of payload data, packet #2 will 
have the sequence number 1001 

• It implements fast recovery (we’ll discuss this on Tuesday)



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?

You now know most of this



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



We’ll figure this out on Thursday.



Have a great afternoon!


