
15-441/641: Computer Networks
The Transport Layer, Part 1 of 3

15-441 Fall 2019
Profs Peter Steenkiste & Justine Sherry

Warmup: BGP Refresh
•X is a small university network with two providers, A and B.

•A’s provider is C.

•B’s provider is D.

•C’s provider is Z.

•D’s provider is Z.

What AS path does traffic take from A to B?

•Why?

X

A B

C D

Z

X

A B

C D

Z

Path #1

X

A B

C D

Z Path #2

Path #1

X

A B

C D

Z Path #2

Path #1 Shortest

Gao-Rexford Conditions

• If I receive a route announcement from my customer, I will announce
that route to my customers, peers, and my providers.

• If I receive a route announcement from my peer, I will announce that
route only to my customers.

• If I receive a route announcement from my provider, I will announce
that route only to my customers.

I only want to carry traffic that will earn me a profit!

Gao-Rexford: “Scrooge McDuck Policy”

X

A B

C D

Z Path #2

Path #1

X would never announce a route for B to A

X

A B

C D

Z Path #2

Path #1

True Path

Another BGP Warmup

•A’s provider is Z. A peers with B.

•B’s provider is Z. B peers with A and C.

•C’s provider is Y. C peers with B.

•Z’s provider is X.

•Y’s provider is X.

What AS path does traffic take from A to C?

•Why?

A B C

YZ

X

Follow the money!

Today
• Starting three lectures on the transport layer.

• The transport layer is currently one of my primary areas of research.

• I’ll teach you the basics….

• For lecture #3, our TA Ranysha is going to tell you about her PhD
research on modern transport on the Internet.

• Including new protocols from companies like Google and Akamai

Quick Review

Transport Layer in the Internet Model

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router

Why a transport layer?

• IP packets are addressed to a host but end-to-end communication
is between application processes at hosts
• Need a way to decide which packets go to which applications

(multiplexing/demultiplexing)

Why a transport layer?

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host B

Why a transport layer?

Transport
Network
Datalink
Physical

Application

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia
ftp

brow
ser

IP

many application 
 processes

Drivers 
+NIC

Operating  
System

Why a transport layer?

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m

edia
ftp

brow
ser

IP

many application 
 processes

Datalink
Physical

telnet
ftp

IP

H
TTP  

server
Transport Transport

Communication  
between hosts

(128.4.5.6 !"162.99.7.56)

Communication 
 between processes

at hosts

Role of the Transport Layer

• Communication between application processes
• Mux and demux from/to application processes
• Implemented using ports

• You know this from Liso project!

Why a transport layer?
• IP packets are addressed to a host but end-to-end communication

is between application processes at hosts
• Need a way to decide which packets go to which applications (mux/

demux)

• IP provides a weak service model (best-effort)
• Packets can be corrupted, delayed, dropped, reordered, duplicated
• No guidance on how much traffic to send and when
• Dealing with this is tedious for application developers

Role of the Transport Layer

• Communication between application processes

• Provide common end-to-end services for app layer [optional]
• Reliable, in-order data delivery
• Well-paced data delivery

• too fast may overwhelm the network
• too slow is not efficient

Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app layer [optional]

• TCP and UDP are the common transport protocols
• also SCTP, MTCP, SST, RDP, DCCP, …

Context: Applications and Sockets
• Socket: software abstraction by which an application process exchanges

network messages with the (transport layer in the) operating system
• socketID = socket(…, socket.TYPE)
• socketID.sendto(message, …)
• socketID.recvfrom(…)

• Two important types of sockets
• UDP socket: TYPE is SOCK_DGRAM
• TCP socket: TYPE is SOCK_STREAM

Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app layer [optional]

• TCP and UDP are the common transport protocols

• UDP is a minimalist, no-frills transport protocol
• only provides mux/demux capabilities

UDP: User Datagram Protocol
• Lightweight communication between processes

• Avoid overhead and delays of ordered, reliable delivery
• UDP described in RFC 768 – (1980!)

• Destination IP address and port to support demultiplexing
• Optional error checking on the packet contents

• (checksum field = 0 means “don’t verify checksum”)

 SRC port DST port

checksum length

DATA

What is a checksum?
• Wikipedia: “A checksum is a small-sized datum derived from a block of digital

data for the purpose of detecting errors that may have been introduced during
its transmission or storage.”

• Simplest checksum:

• Take every, say, 32-bit word and XOR them all together

• Append the result to the end of the packet (adds overhead!)

• At the receiver, re-compute the XOR. If it does not match the appended
checksum, you know some of the data has been corrupted.

• There is a huge literature on “coding” checksumming schemes.

Take a class from Prof. Vinayak to learn
more about information theory and how

to use it to build systems!

UDP

• That’s literally the entire protocol.

• If a packet gets lost, it’s up to the application developer to decide
what to do about it.

Role of the Transport Layer
• Communication between processes

• Provide common end-to-end services for app layer [optional]

• TCP and UDP are the common transport protocols

• UDP is a minimalist, no-frills transport protocol

• TCP is the whole-hog protocol
• offers apps a reliable, in-order, bytestream abstraction
• with congestion control
• but no performance guarantees (delay, bw, etc.)

Why a transport layer?

• IP packets are addressed to a host but end-to-end communication
is between application processes at hosts
• Need a way to decide which packets go to which applications (mux/

demux)

• IP provides a weak service model (best-effort)
• Packets can be corrupted, delayed, dropped, reordered, duplicated

TCP, literally the next three lectures

Getting this right is *hard* and hence
it is an active area of research.

Let’s get started understanding why this is
challenging…

I need two volunteers.

Team Structure
• I have ten beanbags labeled 1 to 10.

• Your job is to transport them from one end of the classroom to the other.

• Like Professor Sherry, you must throw them — you can’t simply carry them
to the other side of the classroom.

• Unlike Professor Sherry, you may have better aim.

• Or they might fall to the ground. If they fall, you can’t pick them back up!

• If you determine that a beanbag is lost, you can grab another beanbag,
label it with the missing number, and re-transmit it.

Team Structure
• Two of you are the end points (sender/receiver) who decide what packets to

transmit, and whether or not to re-transmit. The endpoints must face the wall
— they can’t see the network. But, they can talk!

• The other two represent the network in the middle. You can see everything,
but you can’t talk or signal in any way to the endpoints.

• The sender will will hold up a bean bag in the air if they have a bag they
want you deliver.

• They receiver will hold up their hand so you can put beanbags into it.

• But otherwise no talking! Just try not to let the beanbags fall!

PRIZES

• The winner is whoever successfully gets beanbags numbered 1…10
to their receiver first.

• Winning team gets t-shirts

• Losing team still gets candy!

Back to the real Internet…

How do we tell that a packet has been lost?

• The packet was sent a long time ago, but still has not arrived

• Packet arrives at receiver, but data does not match its checksum

A basic protocol: Stop and Wait
Sender Receiver

A basic protocol: Stop and Wait
Sender Receiver

Packet 1

Each packet carries a sequence number identifying it
as the first, second, third… etc packet.

A basic protocol: Stop and Wait
Sender Receiver

Packet 1

ACK 1

ACK stands for ACKNOWLEDGED
Include sequence number for the packet being

acknowledged.

A basic protocol: Stop and Wait
Sender Receiver

Packet 1

ACK 2
Packet 2

ACK 2

How do we tell that a packet has been lost?

A basic protocol: Stop and Wait
Sender Receiver

Packet 3

Set timer… Packet 3

ACK 3

Retransmit if I haven’t received an ACK by the time
the timer goes off.

How do we tell that a packet has been lost?

• The packet was sent a long time ago, but still has not arrived

• Packet arrives at receiver, but data does not match its checksum

A basic protocol: Stop and Wait
Sender Receiver

Packet 5

Set timer… Packet 5

ACK 5

Just ignore it….

$#!@$@

Stop-and-Wait: Summary
• Sender:

• Transmit packets one by one. Label each with a sequence number. Set timer
after transmitting.

• If receive ACK, send the next packet.

• If timer goes off, re-send the previous packet.

• Receiver:

• When receive packet, send ACK.

• If packet is corrupted, just ignore it — sender will eventually re-send.

Why do we need sequence numbers?
Could we use Stop-and-Wait without

them?

Intuitive Need for Sequence Numbers…
1 2 3 4…

1
2
3

4…
How do we put

the file back
together again

after
packetization?

But maybe we could just standardize this —- say each packet is in row-order starting from top
left. Would we still need sequence numbers for the protocol?

We do, and here’s why…
Sender Receiver

Packet 3 is sent

ACK

Packet 3 is retransmitted

Sequence numbers are needed
for reliability.

What’s wrong with stop-and-
wait?

It’s slow!

How might we fix it?

Making Stop and Wait faster…
Sender Receiver

Packet 1

ACK 1
Packet 2

ACK 2
Packet 3

ACK 3
Packet 4

ACK 4

…and faster…
Sender Receiver

Packet 1

ACK 1

Packet 2

ACK 2

Packet 3

ACK 3

Key idea: “windowing”

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Windowing improves the efficiency of a transport protocol.

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

Window size = 3

Send!

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Windowing improves the efficiency of a transport protocol.

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

ACK 1

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Windowing improves the efficiency of a transport protocol.

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Windowing improves the efficiency of a transport protocol.

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

ACK 2

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Windowing improves the efficiency of a transport protocol.

• We say the window “slides” when a packet is asked.

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Sliding windows improve the efficiency of a transport protocol.

• Two questions we need to answer to use windows:

• (1) How do we handle loss with a windowed approach?

• (2) How big should we make the window?

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Sliding windows improve the efficiency of a transport protocol.

• Two questions we need to answer to use windows:

• (1) How do we handle loss with a windowed approach?

• (2) How big should we make the window?

Approach #1: Go Back N
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Not the expected
packet — 3 — so

ignore.

Packet 6
Packet 7

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Go Back N
• Sender:

• Send up to {n} packets at a time. Set a timeout timer for every packet.

• On receiving an ACK, slide the window forward.

• On timeout, retransmit the timeout packet, and everything after it in the window.

• Receiver:

• On receive next expected sequence number, send an ACK

• If packet is corrupted or has an unexpected sequence number, ignore it.

We don’t use Go Back N on the
Internet… why not?

Loss recovery *works*… but it’s
not very efficient.

Approach #1: Go Back N
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

Ignoring these packets is

wasteful!

Approach #2: Selective Repeat

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Window moves forward

Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

ACK 4
ACK 5

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

ACK 4
ACK 5

Window cannot
move forward

ACK 6
ACK 7

Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Missing packet 3 stops the
window from moving forward

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

ACK 4
ACK 5
ACK 6
ACK 7

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

ACK 4
ACK 5

ACK 3Packet 3

ACK 6
ACK 7

Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Approach #2: Selective Repeat

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Packet 7 Packet 8 Packet 9

Approach #2: Selective Repeat
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK 1
ACK 2

Packet 6
Packet 7

ACK 4
ACK 5

ACK 3Packet 3

Packet 8
Packet 9

….

ACK 6
ACK 7

Selective Repeat
• Sender:

• Send packets from the window. Set timeout for each packet.

• On receiving ACKs for the “left side” of the window, slide forward.

• Send packets that have now entered the window.

• On timeout, retransmit only the timed out packet

• Receiver

• Keep a buffer of size of the window.

• On receiving packets, send ACKs for every packet.

• If packets come in out of order, just store them in the buffer and send ACK anyway.

Receive Buffer

TCP

Liso Server

1 2

Receive Buffer

TCP

Liso Server

1 2
read()

Receive Buffer

TCP

Liso Server1 2

read()

Receive Buffer

TCP

Liso Server

3 4

Receive Buffer

TCP

Liso Server

3 4 6 7 8 9

Receive Buffer

TCP

Liso Server
read()

3 4 6 7 8 9

Receive Buffer

TCP

Liso Server
read()

3 4

6 7 8 9

Receive Buffer

TCP

Liso Server3 4

6 7 8 9 10 11

Receive Buffer

TCP

Liso Server

Application can’t
take in any packets
until missing packet

comes in

3 4

6 7 8 9 10 11

Handling Loss

• Go-Back-N and Selective Repeat both handle loss, while allowing
lots of packets in flight.

• Selective repeat is more efficient at recovering from failure.

What does TCP Do?
• TCP is like Selective Repeat, but…

• It uses cumulative ACKs

• Instead of using per-packet sequence numbers, it uses per-byte
sequence numbers.

• e.g. if packet #1 has 1000 bytes of payload data, packet #2 will
have the sequence number 1001

• It implements fast recovery (we’ll discuss this on Tuesday)

Basic ACKs vs Cumulative ACKs

• Basic ACKs: “ACK n” means “I just received packet n”

• Cumulative ACKs: “ACK n” means, “I have received all packets up
until n-1, I am now expecting to get n”

• Why might a cumulative ACK be better than a “Basic ACK”?

Cumulative ACK
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK2
ACK 3

Packet 6
Packet 7

ACK 3
ACK 3

Cumulative ACK: Recover from Lost ACKs Easily
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

ACK2
ACK 3

Packet 6

Packet 7

ACK 4
ACK 5
ACK 6

What does TCP Do?
• TCP is like Selective Repeat, but…

• It uses cumulative ACKs

• Instead of using per-packet sequence numbers, it uses per-byte
sequence numbers.

• e.g. if packet #1 has 1000 bytes of payload data, packet #2 will
have the sequence number 1001

• It implements fast recovery (we’ll discuss this on Tuesday)

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Sliding windows improve the efficiency of a transport protocol.

• Two questions we need to answer to use windows:

• (1) How do we handle loss with a windowed approach?

• (2) How big should we make the window?

You now know most of this

Sliding Windows
• A sender’s “window” contains a set of packets that have been

transmitted but not yet acked.

• Sliding windows improve the efficiency of a transport protocol.

• Two questions we need to answer to use windows:

• (1) How do we handle loss with a windowed approach?

• (2) How big should we make the window?

We’ll figure this out on Thursday.

Have a great afternoon!

