
10/12/2019

1

The Internet End-End
The Web

15-441 Fall 2019
Profs Peter Steenkiste & Justine Sherry

Thanks to Scott Shenker, Sylvia
Ratnasamay, Peter Steenkiste,

and Srini Seshan for slides.

1945: Vannevar Bush

• “As we may think”, Atlantic
Monthly, July, 1945.

• Describes the idea of a
distributed hypertext system

• A “memex” that mimics the
“web of trails” in our minds

Dec 9, 1968: “The Mother of All Demos”

https://www.youtube.com/watch?v=74c8LntW7fo

First demonstration of Memex-
inspired system

Working prototype with hypertext,
linking, use of a mouse…

Many other iterations before we got to the
World Wide Web

• MINITEL in France. https://en.wikipedia.org/wiki/Minitel

• Project Xanadu. https://en.wikipedia.org/wiki/Project_Xanadu

• (Note that you don’t need to know any of this history for exams, this
is just for the curious…)

10/12/2019

2

1989: Tim Berners-Lee
1989: Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system

• Connects “a web of notes with links”.

• Intended to help CERN physicists in large projects share and
manage information

1990: TBL writes graphical browser for Next machines

1992-1994: NCSA/Mosaic/Netscape browser release

Lots of Traffic!
exabytepetabyte

What is an Exabyte?

KiloKilo 33 1010

MegaMega 66 2020

GigaGiga 99 3030

TeraTera 1212 4040

PetaPeta 1515 5050

ExaExa 1818 6060

ZettaZetta 2121 7070

10x10x 2x2x Network 1,000,000,000,000,000,000 Bytes

YottaYotta 2424 8080

Storage 1,099,511,627,776 MByte

Today

In a few years

A few years ago

Hyper Text Transfer Protocol (HTTP)

● Client-server architecture
● Server is “always on” and “well known”
● Clients initiate contact to server

● Synchronous request/reply protocol
● Runs over TCP, Port 80

● Stateless

● ASCII format

10/12/2019

3

Steps in HTTP 1.0 Request/Response
Client Server

Establish
connection

Request
response

Client
request

Close connection

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr
(blank line)

Client-to-Server Communication
● HTTP Request Message

● Request line: method, resource, and protocol version

● Request headers: provide information or modify request

● Body: optional data (e.g., to “POST” data to the server)

request line

header
lines

carriage return line feed
indicates end of message

13

Server-to-Client Communication
● HTTP Response Message

● Status line: protocol version, status code, status phrase

● Response headers: provide information

● Body: optional data

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 2006 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821
Content-Type: text/html
(blank line)

data data data data data ...

status line
(protocol, status code,
status phrase)

header lines

data
e.g., requested HTML file

HTTP is Stateless

● Each request-response treated independently

● Servers not required to retain state

● Good: Improves scalability on the server-side

● Failure handling is easier

● Can handle higher rate of requests

● Order of requests doesn’t matter

● Bad: Some applications need persistent state

● Need to uniquely identify user or store temporary info

● e.g., Shopping cart, user profiles, usage tracking, …

10/12/2019

4

How to Maintain State in a Stateless Protocol:
Cookies

● Client-side state maintenance
● Client stores small amount of state on behalf of server

● Client sends state in future requests to the server

● Can provide authentication

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

Performance Issues

Performance Goals
● User

● Fast downloads (not identical to low-latency commn.!)

● High availability

● Content provider
● Happy users (hence, above)

● Cost-effective infrastructure

● Network (secondary)
● Minimize overload

Solutions?
Improve HTTP to
compensate for

TCP’s weak spots
● User

● fast downloads (not identical to low-latency commn.!)
● high availability

● Content provider
● happy users (hence, above)
● cost-effective delivery infrastructure

● Network (secondary)
● avoid overload

10/12/2019

5

● User
● fast downloads (not identical to low-latency commn.!)
● high availability

● Content provider
● happy users (hence, above)
● cost-effective delivery infrastructure

● Network (secondary)
● avoid overload

Solutions?

Caching and Replication

Improve HTTP to
compensate for

TCP’s weak spots

Solutions?

● User
● fast downloads (not identical to low-latency commn.!)
● high availability

● Content provider
● happy users (hence, above)
● cost-effective delivery infrastructure

● Network (secondary)
● avoid overload

Caching and Replication

Exploit economies of scale
(Webhosting, CDNs, datacenters)

Improve HTTP to
compensate for

TCP’s weak spots

HTTP Performance

● Most Web pages have multiple objects
● e.g., HTML file and a bunch of embedded images

● How do you retrieve those objects (naively)?
● One item at a time, i.e., one “GET” per TCP connection
● Really limits the state on the server
● Solution used in HTTP 0.9, and 1

● New TCP connection per (small) object!

● Lots of handshakes

● Congestion control state lost across connections

Typical Workload (Web Pages)

• Multiple (typically small) objects per page

• File sizes

• Heavy-tailed

• Pareto distribution for tail

• Lognormal for body of distribution

• Embedded references

• Number of embedded objects also Pareto
Pr(X>x) = (x/xm)-k

• This plays havoc with performance. Why?

• Solutions?

• Lots of small objects versus TCP
• 3-way handshake
• Lots of slow starts
• Extra connection state

10/12/2019

6

Optimizing HTTP for Real Web Pages:
Persistent Connections

● Maintain TCP connection across multiple requests
● Including transfers subsequent to current page
● Client or server can tear down connection

● Performance advantages:
● Avoid overhead of connection set-up and tear-down
● Allow TCP to learn more accurate RTT estimate
● Allow TCP congestion window to increase
● i.e., leverage previously discovered bandwidth

● Drawback? Head of line blocking
● A “slow object” blocks retrieval of all later requests, including “fast” objects

● Default in HTTP/1.1

Pipelined Requests & Responses

Client Server
● Batch requests and responses to

reduce the number of packets

● Multiple requests can be contained
in one TCP segment

● Head of line blocking issues
remains: a delay in Transfer 2
delays all later transfers

Concurrent Requests & Responses
Over Parallel TCP Sessions

● Use multiple connections in parallel

● Speeds up retrieval by ~m

● Does not necessarily maintain order
of responses

● Partially deals with HOL blocking

• Client =

• Content provider =

• Network = Why?

R1
R2 R3

T1

T2 T3

Scorecard: Getting n Small Objects

Time dominated by latency

● One-at-a-time: ~2n RTT

● M concurrent: ~2[n/m] RTT

● Persistent: ~ (n+1)RTT

● Pipelined: ~2 RTT

● Pipelined/Persistent: ~2 RTT first time, RTT later

10/12/2019

7

Scorecard: Getting n Large Objects

Time dominated by bandwidth

● One-at-a-time: ~ nF/B

● M concurrent: ~ [n/m] F/B
● assuming shared with large population of users
● and each TCP connection gets the same bandwidth

● Pipelined and/or persistent: ~ nF/B
● The only thing that helps is getting more bandwidth..

Classic Solution: Caching

● Why does caching help performance?
● Exploits locality of reference
● Reduces average response time and load on the network

● How well does caching work?
● Very well, up to a limit
● Large overlap in content
● But many unique requests

● Trend: increase in dynamic content
● E.g., customizing of web pages
● Reduces benefits of caching
● Some exceptions, e.g., video

● Baseline: Many clients transfer the same information
● Generate unnecessary server and network load
● Clients experience unnecessary latency

● An ideal cache is:
● Shared by many clients
● Very close to the client

● Everywhere!
● Client
● Forward proxies
● Reverse proxies
● Content Distribution Network

Server

Clients

Tier-1 ISP

ISP-1 ISP-2

Caching: Where?

● Clients keep a local cache of recently
accessed objects
● Clients often have a small number of web

pages they access frequently
● Leads to reuse of logos, old content, java

scripts, …

● Cheap: no additional
infrastructure needed

● But caching closer to server can lead to
higher hit rates!

Server

Clients

Tier-1 ISP

ISP-1 ISP-2

Caching: Clients

10/12/2019

8

31

Caching with Reverse Proxies

● Cache documents close to server
 decrease server load

● Typically done by content provider

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Caching with Forward Proxies

● Cache documents close to clients
 Decrease latency

● Typically done by ISPs or enterprises
 Reduce provider traffic load

● Very cost effective
 Remember BGP?

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Caching: How to Avoid Stale Content

● Modifier to GET requests:
● If-modified-since – returns “not modified” if resource

not modified since specified time

GET /~ee122/fa13/ HTTP/1.1
Host: inst.eecs.berkeley.edu
User-Agent: Mozilla/4.03
If-modified-since: Sun, 27 Oct 2013 22:25:50 GMT
<CRLF>

● Client specifies “if-modified-since” time in request
● Server compares this against “last modified” time of resource
● Server returns “Not Modified” if resource has not changed
● …. or a “OK” with the latest version otherwise

Caching: Helping the Cache

● Modifier to GET requests:
● If-modified-since – returns “not modified” if resource

not modified since specified time

● Response header:
● Expires – how long it’s safe to cache the resource
● No-cache – ignore all caches; always get resource

directly from server

10/12/2019

9

● Replicate popular Web site across many machines
● Spreads load on servers

● Places content closer to clients

● Helps when content isn’t cacheable

● Problem: Want to direct client to particular replica
● Balance load across server replicas

● Pair clients with nearby servers

● Common solution:
● DNS returns different addresses based on client’s geo

location, server load, etc.

Replication Content Distribution Networks

● Caching and replication as a service
● Large-scale distributed storage infrastructure (usually)

administered by one entity
● e.g., Akamai has servers in 20,000+ locations

● Combination of (pull) caching and (push) replication
● Pull: Direct result of clients’ requests
● Push: Expectation of high access rate

● Also do some processing
● Handle dynamic web pages
● Transcoding

● More on this in the next lectures

Cost-Effective Content Delivery

● General theme: multiple sites hosted on shared
physical infrastructure

● efficiency of statistical multiplexing

● economies of scale (volume pricing, etc.)

● amortization of human operator costs

● Examples:
● Web hosting companies

● CDNs

● Cloud infrastructure

Performance Issues

Are We Done Yet?

10/12/2019

10

Some Challenges with HTTP 1.1
● Head of line blocking: “slow” objects delay later requests

● E.g., objects from remote storage versus objects in local memory

● Browsers open multiple TCP connections to achieve parallel transfers

● Increases throughput and reduces impact of HOL blocking

● But: increases load on servers and network

● HTTP headers are big

● Cost higher for small objects

● Objects have dependencies, different priorities

● Javascript versus images

● Extra RTTs for “dependent” objects

40

Example of Head of Line Blocking

41

Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Other objects
could have
been sent

HTTP 2.0 to the Rescue
● Responses are multiplexed over single TCP connection

● Server can send response data whenever it is ready

● “Fast” objects can bypass slow objects – avoids HOL blocking

● Fewer handshakes, more traffic (help cong. ctl., e.g., drop tail)

● Multiplexing uses prioritized flow controlled streams
● Urgent responses can bypasses non-critical responses

●  multiple parallel prioritized TCP connections, but over one TCP connection

● HTTP headers are compressed

● A PUSH features allows server to push embedded objects to the
client without waiting for a client request

● Avoids an RTT

● Default is to use TLS – fall back on 1.1 otherwise

42

HTTP/2 Multi-Streams Multiplexing

https://tools.ietf.org/html/rfc7540

HTTP/2 Binary Framing

10/12/2019

11

Multiplexing

● Traffic sent as frames over prioritized streams

● Frames types: headers, data, settings, window updates and push
promise

● Sender sends high priority frames first

● Frames are pulled from a per-stream queue when TCP is ready to
accept more data

● Reduces queueing delay

● Each stream is flow controlled

● Receiver opens window faster for high priority streams

● Replicates TCP function but at finer granularity

● Clearly adds complexity to HTTP library

44

HTTP/2 Server Push

45

HTTP 2 PUSH Features
● Server can “push” objects that it knows (or thinks) the client will need

● Avoids delay of having client parse the page and requesting the
objects (> RTT)

● But what happens if object is in the client cache – Oops!

● Server sends PUSH_PROMISE before the PUSH

● Client can cancel/abort the PUSH

● How does server know what to PUSH?

● Very difficult problem with dynamic content

● Javascripts can rewrite web page – changes URLs

● Also: benefits limited to objects from the origin server

46

