The Internet End-End
The Web

15-441 Fall 2019
Profs Peter Steenkiste & Justine Sherry

N .
Thanks to Scott Shenker, Sylvia (‘arnegle
Ratnasamay, Peter Steenkiste, Meu_on

and Srini Seshan for slides. University

Dec 9, 1968: “The Mother of All Demos”

First demonstration of Memex-
inspired system

Working prototype with hypertext,
linking, use of a mouse...

https://www.youtube.com/watch?v=74c8LntW7fo *

10/12/2019

1945: Vannevar Bush

“As we may think”, Atlantic
Monthly, July, 1945.

| - Describes the idea of a

AS WE MAY THINK distributed hypertext system

A TOP U.S. SCIENTIST FORESEES A POSSIBLE FUTURE WORLD . , -
IN WHICH MAN-MADE MACHINES WILL START TO THINK | * A ‘memex” that mimics the
e “web of trails” in our minds

4

Many other iterations before we got to the
World Wide Web

- MINITEL in France. https://en.wikipedia.org/wiki/Minitel

« Project Xanadu. https://en.wikipedia.org/wiki/Project Xanadu

- (Note that you don’t need to know any of this history for exams, this
is just for the curious...)

4

1989: Tim Berners-Lee

1989: Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system

- Connects “a web of notes with links”.

- Intended to help CERN physicists in large projects share and
manage information

1990: TBL writes graphical browser for Next machines

1992-1994: NCSA/Mosaic/Netscape browser release

4

What is an Exabyte?

3 10 Storage 1,099,511,627,776 MByte

20
30

Mega
Giga
Tera

A few years ago

Today

Zetta
Yotta

In a few years

"

24

Network 1,000,000,000,000,000,000 Bytes

4

10/12/2019

Lots of Traffic!

petabyte ~ exabyte

Mobile Traffic Is Growing at Unprecedented Pace

Global IP traffic in petabytes per month

M Fixed IP Traffic [l Mobile IP Trafic

2006.2012

146%

Video Accounts for Half of Ever-Growing Internet Traffic
Estimated global IP traffic per month (in exabyte)

‘Time Spent per Adult User per Day with Digital Media, USA,
2008 - 2015YTD

Hyper Text Transfer Protocol (HTTP)

« Client-server architecture

» Serveris “always on” and “well known”

» Clients initiate contact to server

« Synchronous request/reply protocol

« Runs over TCP, Port 80
« Stateless

« ASCII format

Steps in HTTP 1.0 Request/Response

Client Server

TCP Syn
Establish
connection TCP syn + ack

Client Te
request —| CP 4

CK + HTTP GET
Request \

response /

Close connection \

=

10/12/2019

Server-to-Client Communication

« HTTP Response Message
» Status line:

« Response headers: pro
« Body: optional data

status line

(protocol, status code -
status phrase) Connection close

Date: Thu, 06 Aug 2006 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821

Content-Type: text/html

header lines

data—
e.g., requested HTML file

data data data data data ...

Client-to-Server Communication
« HTTP Request Message

. Request Iine:-and

protocol version

» Body:

request line

omed:.r/page htm ¢@

Host: www. .edu
header {Jser-agent: Moz:l.lla/4 0
lines nnection: close
Adcept-language: fr

/4—ala 'k line)

carriage return line feed
indicates end of message

HTTP is Stateless

« Each request-response treated independently
« Servers not required to retain state

« Good: Improves scalability on the server-side
« Failure handling is easier
« Can handle higher rate of requests
« Order of requests doesn’t matter

« Bad: Some applications need persistent state
« Need to uniquely identify user or store temporary info
« e.g., Shopping cart, user profiles, usage tracking, ...

How to Maintain State in a Stateless Protocol:
Cookies

« Client-side state maintenance
« Client stores small amount of state on behalf of server
« Client sends state in future requests to the server

« Can provide authentication

Response
Set-Cookie: XYZ

10/12/2019

Performance Goals

o User
« Fast downloads (not identical to low-latency commn.!)
» High availability

« Content provider
» Happy users (hence, above)
» Cost-effective infrastructure

« Network (secondary)
» Minimize overload

Performance Issues

Solutions?

(Improve HTTP to
/ compensate for
- User L TCP’s weak spots)

«» fast downloads (not identical to low-latency commn.!)
- high availability

« Content provider

«» cost-effective delivery infrastructure

« Network (secondary)
- avoid overload

10/12/2019

Solqtions? Solutions?

Improve HTTP to (Improve HTTP to
compensate for compensate for
« User TCP’s weak spots) « User TCP’s weak spots)
» fast downloads (not identical to low-latency commn.!) - fast downloads (not identical to low-latency commn.!)
- high availability » high availability
« Content provider Caching and Replication « Content provider [Caching and Replication

. cost-effective delivery infrastr

» cost-effective delivery infrastructure

« Network (seconda

) Exploit economies of scale
» avoid overload

« Network (secondary)
((Webhosting, CDNs, datacenters)

* » avoid overload

4

HTTP Performance Typical Workload (Web Pages)

« Most Web pages have multiple objects + Multiple (typically small) objects per page

- e.g., HTML file and a bunch of embedded images * File sizes °Lt;ts“:;fystr]r1az:l!jgzjaekc;s versus TCP
* Heavy-tailed + Lots of slow starts

« How do you retrieve those objects (naively)? « Pareto distribution for tail | * Exira connection state
« One item at a time, i.e., one “GET” per TCP connection

» Really limits the state on the server * Lognormal for body of distribution

« Solution used in HTTP 0.9, and 1 + Embedded references
. . » Number of embedded objects also Pareto
. !
New TCP connection per (small) object! Pr(X>x) = (x/xm)-k

« Lots of handshakes

« Congestion control state lost across connections . Solutions?

* + This plays havoc with performance. Why?

Optimizing HTTP for Real Web Pages:
Persistent Connections

« Maintain TCP connection across multiple requests
« Including transfers subsequent to current page
« Client or server can tear down connection

« Performance advantages:
- Avoid overhead of connection set-up and tear-down
« Allow TCP to learn more accurate RTT estimate
« Allow TCP congestion window to increase
- i.e., leverage previously discovered bandwidth

« Drawback? Head of line blocking
- A “slow object” blocks retrieval of all later requests, including “fast” objects

o Defaultin HTTP/1.1

4

10/12/2019

Concurrent Requests & Responses
Over Parallel TCP Sessions

« Use multiple connections in parallel !ﬂ
« Speeds up retrieval by ~m
« Does not necessarily maintain order 2|

of responses
« Partially deals with HOL blocking

Vel

N
T
+ Client = 0 ’[

» Content provider = 0
« Network = 0 Why? rﬂﬂ /

Pipelined Requests & Responses

« Batch requests and responses to Client Server
reduce the number of packets Request 1
Request »
Requesta

« Multiple requests can be contained

in one TCP segment Transfer 1

Transfer 2

. . . nsfer 3
« Head of line blocking issues e

remains: a delay in Transfer 2

delays all later transfers }

Scorecard: Getting n Small Objects

Time dominated by latency

« One-at-a-time: ~2n RTT

« M concurrent: ~2[n/m] RTT
« Persistent: ~ (n+1)RTT

« Pipelined: ~2 RTT

« Pipelined/Persistent: ~2 RTT first time, RTT later

Scorecard: Getting n Large Objects
Time dominated by bandwidth

« One-at-a-time: ~ nF/B

« M concurrent: ~ [n/m] F/B
» assuming shared with large population of users
» and each TCP connection gets the same bandwidth

« Pipelined and/or persistent: ~ nF/B

« The only thing that helps is getting more bandwidth.. *

10/12/2019

Caching: Where?

« Baseline: Many clients transfer the same information
« Generate unnecessary server and network load
« Clients experience unnecessary latency

Server i

« An ideal cache is:
» Shared by many clients

» Very close to the client Tier-1 ISP

« Everywhere!
« Client
» Forward proxies

» Reverse proxies
» Content Distribution Network

Clients

Classic Solution: Caching

« Why does caching help performance?
« Exploits locality of reference

» Reduces average response time and load on the network

« How well does caching work?
« Very well, up to a limit
» Large overlap in content
« But many unique requests

» Trend: increase in dynamic content
« E.g., customizing of web pages
» Reduces benefits of caching

» Some exceptions, e.g., video *

Caching: Clients

« Clients keep a local cache of recently
accessed objects
«» Clients often have a small number of web
pages they access frequently

- Leads to reuse of logos, old content, java
scripts, ...

Server

Tier-1 ISP
« Cheap: no additional

infrastructure needed

Clients .[::l. =1

« But caching closer to servercan lead to .
higher hit rates! *

10/12/2019

Caching with Reverse Proxies Caching with Forward Proxies

» Cache documents close to server B server
- decrease server load °

« Typically done by content provider

Cache documents close to clients

- Decrease latency

« Typically done by ISPs or enterprises Reverse proxies
- Reduce provider traffic load

« Very cost effective

- Remember BGP?

Reverse proxies

Forward proxies

Clients

Caching: How to Avoid Stale Content Caching: Helping the Cache

« Modifier to GET requests:
- If-modified-since — returns “not modified” if resource « Modifier to GET requests:

not modified since specified time . Tf-modified-since — returns “not modified” if resource

not modified since specified time
GET /~eel22/fal3/ HTTP/1.1
Host: inst.eecs.berkeley.edu

User-Agent: Mozilla/4.03 . ReSponse header:

If-modified-since: Sun, 27 Oct 2013 22:25:50 GMT - Expires —how long it's safe to cache the resource
B « No-cache — ignore all caches; always get resource
directly from server

« Client specifies “if-modified-since” time in request

« Server compares this against “last modified” time of resource
« Server returns “Not Modified” if resource has not changed

eora“OK” with the latest version otherwise

10/12/2019

Content Distribution Networks

Replication
« Caching and replication as a service

« Replicate popular Web site across many machines » Large-scale distributed storage infrastructure (usually)

. Spreads load on servers administered by one entity

. Places content closer to clients » e.g., Akamai has servers in 20,000+ locations

« Helps when content isn't cacheable « Combination of (pull) caching and (push) replication

« Pull: Direct result of clients’ requests

« Problem: Want to direct client to particular replica « Push: Expectation of high access rate

- Balance load across server replicas » Also do some processing

- Pair clients with nearby servers « Handle dynamic web pages

« Transcoding
« Common solution:

- DNS returns different addresses based on client’s geo « More on this in the next lectures
location, server load, etc.

Cost-Effective Content Delivery

« General theme: multiple sites hosted on shared
physical infrastructure

«» efficiency of statistical multiplexing Pe rfo rmance I ssues
» economies of scale (volume pricing, efc.)
» amortization of human operator costs

« Examples: Al’e We Done Yet?

» Web hosting companies
. CDNs

« Cloud infrastructure }

10/12/2019

Some Challenges with HTTP 1.1 Example of Head of Line Blocking

Client Server

« Head of line blocking: “slow” objects delay later requests &
« E.g., objects from remote storage versus objects in local memory

« Browsers open multiple TCP connections to achieve parallel transfers SIN \ oms -
« Increases throughput and reduces impact of HOL blocking s Pm——— L’E}}g
« But: increases load on servers and network GH“},',‘““, P S6ms s

« HTTP headers are big SETles s =
« Cost higher for small objects sener procesing: 40 ms n Z

124ms i HTML response Ed

« Objects have dependencies, different priorities G55 response

tion 152ms

« Javascript versus images Other objects
« Extra RTTs for “dependent” objects } M M could have }
Source: labs.oreilly. 230000000545/ch11.him! been sent

HTTP 2.0 to the Rescue HTTP/2 Multi-Streams Multiplexing

« Responses are multiplexed over single TCP connection HTTP/2 connection
« Server can send response data whenever it is ready
« “Fast” objects can bypass slow objects — avoids HOL blocking - .| stream1 stream 3 stream 3 stream 1
« Fewer handshakes, more traffic (help cong. ctl., e.g., drop tail) DATA | HEADERS DATA DATA
« Multiplexing uses prioritized flow controlled streams aeant
« Urgent responses can bypasses non-critical responses # DATA
« =~ multiple parallel prioritized TCP connections, but over one TCP connection Client
« HTTP headers are compressed
« A PUSH features allows server to push embedded objects to the Bit | +0.7 +8..15 +16..23 | +24..31
client without waiting for a client request 3?2 | T ; Length Type
| Stream Identifier

« Avoids an RTT 20| R :
« Defaultis to use TLS — fall back on 1.1 otherwise we | _) Frame Payload
HTTP/2 Binary Framing
htlis://lools.ietf.orihtml/rfc7540

Multiplexing

« Traffic sent as frames over prioritized streams

« Frames types: headers, data, settings, window updates and push
promise

» Sender sends high priority frames first

o Frames are pulled from a per-stream queue when TCP is ready to
accept more data

« Reduces queueing delay

» Each stream is flow controlled
« Receiver opens window faster for high priority streams
» Replicates TCP function but at finer granularity

» Clearly adds complexity to HTTP library

4

HTTP 2 PUSH Features

« Server can “push” objects that it knows (or thinks) the client will need
« Avoids delay of having client parse the page and requesting the
objects (> RTT)
« But what happens if object is in the client cache — Oops!
« Server sends PUSH_PROMISE before the PUSH
« Client can cancel/abort the PUSH
« How does server know what to PUSH?
« Very difficult problem with dynamic content
« Javascripts can rewrite web page — changes URLs
« Also: benefits limited to objects from the origin server

4

10/12/2019

HTTP/2 Server Push

HTTP/2 connection

stream 1
HEADERS

stream 4 stream1 | stream4 | stream?2 |
DATA HEADERS | PUSH_PROMISE | PUSH PROMISE
stream 1
DATA

stream 1: /page. html
stream 2: /script.js
stream 4: /style.css

(client request)

(push promise)
(push promise)

