
Security II: Security Strikes Back
15-441/641 Fall 2019

Profs Peter Steenkiste & Justine Sherry

What should my graph look like?

Real graph from last year

Getting full credit on your graph

• Needs to show phases of TCP!

• You might need to emulate a slower link

• or send a longer file

Cryptography Overview

15-411: security

Confidentiality

Integrity

Authentication

Symmetric Asymmetric

One-Time Pad
Stream Ciphers
Block Ciphers

Encrypt w/ Public Key

Message Authentication
Code
(e.g., HMAC, CBC-MAC)

MAC + Nonce

Digital Signature

Digital Signature + Nonce

Symmetric vs. Asymmetric
• Shared secret

• 80 bit key for high security
(in 2010)

• ~1,000,000 ops/s on
1GHz proc

• 10x speedup in HW

• Public/private key pairs

• 2048 bit key for high
security (in 2010)

• ~100 signs/s & ~1,000
verifies/s (RSA, 1GHz)

• Limited speedup in HW

Symmetric Asymmetric

Refresh from Tuesday
• What is confidentiality? What is integrity? What is authentication?

• Why does authentication require a nonce?

• How many keys are used when two parties communicate using
symmetric cryptography?

• How many keys are used when two parties communicate using
asymmetric cryptography?

How do we get keys?

Wait… how do we get the keys in the first place?

How do I get these keys in the first place??
Remember:

• Symmetric key primitives assumed Alice and Bob had already

shared a key.
• Asymmetric key primitives assumed Alice knew Bob’s public key.

 This may work with friends, but when was the last time you saw
Amazon.com walking down the street?

“Key Signing Party”

Key Setup

• We’ll briefly look at 2 mechanisms:
• Diffie Hellman Key Exchange
• Certificate Authorities

Diffie-Hellman key exchange

• An early (1976) way to create a shared secret.

• Everyone knows a prime, p, and a generator, g.

• Alice and Bob want to share a secret, but only have internet to
communicate over.

An activity: agree on a secret word
while the whole classroom can hear

you.

Why is this hard?

DH key exchange

BobAlice

Everyone: large prime p and generator g

Create secret: a

Create secret: b

Compute: (gb mod p)a Compute: (ga mod p)b

Voila: They both know gab which is secret!

Send Bob: ga mod p

Send Alice: gb mod p

Math says: No attacker can compute gab mod
p just by listening to their communication!

(It’s computationally intractable)

Security mindset: are we good
to go?

DH key exchange & Man-In-The-Middle

ga mod p gc mod p

gb mod pgc mod p

Threat Model

• Always important to be clear about what you think your attacker is
capable of!

• If you think your attacker is capable of modifying traffic, can’t use
DH!

• But if attacker is just an eavesdropper — you’re good to go!

Certification Authorities

• Certification authority (CA): binds public key to particular entity, E.
• An entity E registers its public key with CA.

• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• Certificate contains E’s public key AND the CA’s signature of E’s public key.

Bob’s
public

key

Bob’s
identifying

information

CA generates
S = Sign(KB)

CA
private

key

certificate = Bob’s public
key and signature by

CA

KB

K-1 CA

KB

Certification Authorities
• When Alice wants Bob’s public key:

• Gets Bob’s certificate (Bob or elsewhere).
• Use CA’s public key to verify the signature within Bob’s certificate, then accepts public

key

15-411: security

Verify(S, KB)

CA
public

key KCA

KB If signature
is valid, use
KB

Certificate Contents

■ Cert owner
■ Cert issuer
■ Valid dates
■ Fingerprint

of signature

Which Authority Should You Trust?
• If the browser detects a problem with a certificate, it asks user what to do

• Invalid, expired, self-signed, …

• Users often blindly click “yes”

• They don’t know about certificates or TLS; don’t understand implications
of a bad certificates

• Certificates are hard to read and can be misleading

• Most information makes no sense to user

• Names can be confusing, e.g., minor variants

Which Authority Should You Trust?

• Today: many authorities

How do we apply symmetric and
asymmetric crypto on the Internet?

 
Let’s put it all together! 

 
Transport Layer Security (TLS) 
aka Secure Socket Layer (SSL)

Uses certificate authority to provide public key

Uses asymmetric crypto to establish symmetric key

Uses symmetric crypto for data encryption

This is called “hybrid
encryption.”

Setup Channel with TLS “Handshake”
Handshake Steps:

1) Client and server negotiate
exact cryptographic protocols

2) Client validates public key
certificate with CA public key.

3) Client encrypts secret random
value with server’s key, and
sends it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

How TLS Handles Data
1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

Middleboxes + TLS :(
• Middleboxes are very widely used in the Internet

• Companies have firewalls
• Cellular operators use caches, compression, …

• But TLS makes middleboxes ineffective

• “Solution”: install fake root certificate on device
• Common for corporate networks
• Sometimes also done by service providers

KCA
foo.com

TLS hello

foo

TLS TLS

BONUS CONFIDENTIALITY TIME

Does TLS keep who you are talking to confidential?

TLS gives confidentiality, but not anonymity.

Anonymity is confidentiality for who is talking, not
just what they are saying.

Do we even want anonymity?

Chaum’s Mix
• Early proposal for anonymous email

• David Chaum. “Untraceable electronic mail, return addresses, and digital
pseudonyms”. Communications of the ACM, February 1981.

• Public key crypto + trusted re-mailer (Mix)
• Untrusted communication medium
• Public keys used as persistent pseudonyms

• Modern anonymity systems use Mix as the basic building block

Before spam, people thought
anonymous email was a good idea ☺

Basic Mix Design

A

C

D

E

B

Mix

{r1,{r0,M}pk(B),B}pk(mix)
{r0,M}pk(B),B

{r2,{r3,M’}pk(E),E}pk(mix)

{r4,{r5,M’’}pk(B),B}pk(mix)

{r5,M’’}pk(B),B

{r3,M’}pk(E),E

Adversary knows all senders and
all receivers, but cannot link a sent
 message with a received message

How can a basic mix help privacy?
How can a basic mix go wrong?

Modern anonymity networks:
Tor & Onion Routing

Onion Routing

R R4

R1
R2

R

RR3

Bob

R

R

R

! Sender chooses a random sequence of routers
! Some routers are honest, some controlled by attacker
! Sender controls the length of the path

Alice

Route Establishment
R4

R1

R2 R3 BobAlice

{R2,k1}pk(R1),{ }k1
{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3
{B,k4}pk(R4),{ }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key
• Each router learns only the identity of the next router

Anonymity Activity

Tor
• Second-generation onion routing network

• http://tor.eff.org
• Developed by Roger Dingledine, Nick Mathewson and Paul Syverson
• Specifically designed for low-latency anonymous Internet communications

• Running since October 2003

• 100 nodes on four continents, thousands of users

• “Easy-to-use” client proxy
• Freely available, can use it for anonymous browsing

Have any of y’all used Tor
before?

Summary
• Internet design and growth => security challenges
• Symmetric (pre-shared key, fast) and asymmetric (key pairs, slow)

primitives provide:
• Confidentiality
• Integrity
• Authentication

• “Hybrid Encryption” leverages strengths of both.
• Great complexity exists in securely acquiring keys.
• Anonymity remains a great challenge in networking.

