
Datacenter Networks
Justine Sherry & Peter Steenkiste

15-441/641



My trip to a Facebook datacenter last year.

(These are actually stock photos because you can’t take pics in the machine rooms.)



Receiving room: this many servers arrived *today*



Upstairs: Temperature and Humidity Control



Upstairs: Temperature and Humidity Control

so many fans



Why so many servers?
• Internet Services

• Billions of people online using online services requires lots of compute… 
somewhere! 

• Alexa, Siri, and Cortana are always on call to answer my questions! 

• Warehouse-Scale Computing

• Large scale data analysis: billions of photos, news articles, user clicks — all of 
which needs to be analyzed. 

• Large compute frameworks like MapReduce and Spark coordinate tens to 
thousands of computers to work together on a shared task.



A very large network switch 



Cables in ceiling trays run everywhere



How are datacenter networks different from 
networks we’ve seen before?

• Scale: very few local networks have so many machines in one place: 
10’s of thousands of servers — and they all work together like one 
computer! 

• Control: entirely administered by one organization — unlike the 
Internet, datacenter owners control every switch in the network and the 
software on every host 

• Performance: datacenter latencies are 10s of us, with 10, 40, even 
100Gbit links. 

How do these factors change how we design datacenter networks?



There are many ways that datacenter networks differ from the Internet. 
Today I want to consider these three themes: 

1. Topology 

2. Congestion Control 

3. Virtualization

How are datacenter networks different from 
networks we’ve seen before?



Network topology is the arrangement 
of the elements of a communication 

network.



Wide Area Topologies

Figure �: B� worldwide deployment (����).

not a panacea; we summarize our experience with a large-scale B�
outage, pointing to challenges in both SDN and large-scale network
management. While our approach does not generalize to all WANs
or SDNs, we hope that our experience will inform future design in
both domains.

2. BACKGROUND
Before describing the architecture of our so�ware-de�nedWAN,

we provide an overview of our deployment environment and tar-
get applications. Google’s WAN is among the largest in the Internet,
delivering a range of search, video, cloud computing, and enterprise
applications to users across the planet. �ese services run across a
combination of data centers spread across the world, and edge de-
ployments for cacheable content.

Architecturally, we operate two distinct WANs. Our user-facing
network peers with and exchanges tra�c with other Internet do-
mains. End user requests and responses are delivered to our data
centers and edge caches across this network. �e second network,
B�, provides connectivity among data centers (see Fig. �), e.g., for
asynchronous data copies, index pushes for interactive serving sys-
tems, and end user data replication for availability. Well over ���
of internal application tra�c runs across this network.

We maintain two separate networks because they have di�erent
requirements. For example, our user-facing networking connects
with a range of gear and providers, and hence must support a wide
range of protocols. Further, its physical topology will necessarily be
more dense than a network connecting a modest number of data
centers. Finally, in delivering content to end users, it must support
the highest levels of availability.

�ousands of individual applications run across B�; here, we cat-
egorize them into three classes: i) user data copies (e.g., email, doc-
uments, audio/video �les) to remote data centers for availability/-
durability, ii) remote storage access for computation over inherently
distributed data sources, and iii) large-scale data push synchroniz-
ing state across multiple data centers. �ese three tra�c classes are
ordered in increasing volume, decreasing latency sensitivity, and de-
creasing overall priority. For example, user-data represents the low-
est volume on B�, is the most latency sensitive, and is of the highest
priority.

�e scale of our network deployment strains both the capacity
of commodity network hardware and the scalability, fault tolerance,
and granularity of control available from network so�ware. Internet
bandwidth as a whole continues to grow rapidly [��]. However, our
ownWAN tra�c has been growing at an even faster rate.

Our decision to build B� around So�ware De�ned Networking
and OpenFlow [��] was driven by the observation that we could not
achieve the level of scale, fault tolerance, cost e�ciency, and control
required for our network using traditional WAN architectures. A
number of B�’s characteristics led to our design approach:

● Elastic bandwidth demands: �e majority of our data cen-
ter tra�c involves synchronizing large data sets across sites.
�ese applications bene�t from as much bandwidth as they
can get but can tolerate periodic failures with temporary
bandwidth reductions.● Moderate number of sites: While B�must scale among multi-
ple dimensions, targeting our data center deployments meant
that the total number of WAN sites would be a few dozen.● End application control: We control both the applications and
the site networks connected to B�. Hence, we can enforce rel-
ative application priorities and control bursts at the network
edge, rather than through overprovisioning or complex func-
tionality in B�.● Cost sensitivity: B�’s capacity targets and growth rate led to
unsustainable cost projections. �e traditional approach of
provisioningWAN links at ��-��� (or �-�x the cost of a fully-
utilized WAN) to protect against failures and packet loss,
combined with prevailing per-port router cost, would make
our network prohibitively expensive.

�ese considerations led to particular design decisions for B�,
which we summarize in Table �. In particular, SDN gives us a
dedicated, so�ware-based control plane running on commodity
servers, and the opportunity to reason about global state, yielding
vastly simpli�ed coordination and orchestration for both planned
and unplanned network changes. SDN also allows us to leverage
the raw speed of commodity servers; latest-generation servers are
much faster than the embedded-class processor in most switches,
and we can upgrade servers independently from the switch hard-
ware. OpenFlow gives us an early investment in an SDN ecosys-
tem that can leverage a variety of switch/data plane elements. Crit-
ically, SDN/OpenFlow decouples so�ware and hardware evolution:
control plane so�ware becomes simpler and evolves more quickly;
data plane hardware evolves based on programmability and perfor-
mance.
We had several additional motivations for our so�ware de�ned

architecture, including: i) rapid iteration on novel protocols, ii) sim-
pli�ed testing environments (e.g., we emulate our entire so�ware
stack running across the WAN in a local cluster), iii) improved
capacity planning available from simulating a deterministic cen-
tral TE server rather than trying to capture the asynchronous rout-
ing behavior of distributed protocols, and iv) simpli�ed manage-
ment through a fabric-centric rather than router-centricWAN view.
However, we leave a description of these aspects to separate work.

3. DESIGN
In this section, we describe the details of our So�ware De�ned

WAN architecture.

3.1 Overview
Our SDN architecture can be logically viewed in three layers, de-

picted in Fig. �. B� serves multiple WAN sites, each with a num-
ber of server clusters. Within each B� site, the switch hardware
layer primarily forwards tra�c and does not run complex control
so�ware, and the site controller layer consists of Network Control
Servers (NCS) hosting both OpenFlow controllers (OFC) and Net-
work Control Applications (NCAs).
�ese servers enable distributed routing and central tra�c engi-

neering as a routing overlay. OFCs maintain network state based on
NCA directives and switch events and instruct switches to set for-
warding table entries based on this changing network state. For fault
tolerance of individual servers and control processes, a per-site in-

Google’s Wide Area 
Backbone, 2011

AS Name ISP with customer & peer POPsRouters Links Routers Links
1221 Telstra (Australia) 355 700 2,796 3,000 61
1239 Sprintlink (US) 547 1,600 8,355 9,500 43
1755 Ebone (Europe) 163 300 596 500 25
2914 Verio (US) 1,018 2,300 7,336 6,800 121
3257 Tiscali (Europe) 276 400 865 700 50
3356 Level3 (US) 624 5,300 3,446 6,700 52
3967 Exodus (US) 338 800 900 1,100 23
4755 VSNL (India) 11 12 121 69 10
6461 Abovenet (US) 367 1,000 2,259 1,400 21
7018 AT&T (US) 733 2,300 10,214 12,500 108

Table 1: The number of routers, links, and POPs for all ten ISPs. ISP routers include backbone and gateway routers. With customer
and peer routers adds directly connected customer access and peer routers. Links include only interconnections between these sets
of routers, and are rounded to the nearest hundreds. POPs are identified by distinct location tags in the ISP’s naming convention.

Figure 7: Backbone topologies of AT&T (top), Sprint (middle),
and Level 3 (bottom). Multiple links may be present between
two cities; only one link is shown for clarity. Shaded relief back-
ground image c⃝1995 Ray Sterner, Johns Hopkins University
Applied Physics Laboratory, used with permission.

6. EVALUATION
In this section we evaluate the effectiveness of our techniques

along two axes: the fidelity of the resulting maps and the efficiency
with which they were constructed.

sl−bb12−spr−15−0
sl−bb12−spr−14−0
sl−bb12−spr−10−0

sl−bb10−spr−10−0
sl−bb10−spr−13−1
sl−bb10−spr−14−0
sl−bb10−spr−15−0

sl−bb11−spr−13−1
sl−bb11−spr−10−0

sl−bb11−spr−14−0

sl−gw4−spr−14−0sl−gw6−spr−0−0
sl−gw1−spr−0−0−0
sl−gw1−spr−1−1−1−ts0
sl−gw1−spr−5−0−0−ts23
sl−gw1−spr−6−0−0−ts3

sl−bb11−spr−15−0

Neighbors NeighborsNeighbors

Other POPS

Other
POPSOther

POPS

Figure 8: A sample POP topology from Sprint in Springfield,
Illinois. The names are prefixes of the full names, without
sprintlink.net. Most POPs in Sprint are larger and too com-
plex to show, but retain the same design.

6.1 Completeness
We use four independent tests to estimate the accuracy and com-

pleteness of our maps. First, we ask the ISPs we mapped to help
with validation. Second, we devise a new technique to estimate
the completeness of an ISP map using IP address coverage. Third,
we compare the BGP peerings we found to those present at Route-
Views. Finally, we compare our maps with those obtained by Skit-
ter [6], an on-going Internet mapping effort at CAIDA.

6.1.1 Validating with ISPs
Three out of ten ISPs assisted us with a partial validation of their

maps. We do not identify the ISPs because the validation was con-
fidential. Below we list the questions we asked and the answers we
received.

1. Did we miss any POP? All three ISPs said No. In one case,
the ISP pointed out a mislocated router; the router’s city code
was not in our database.

2. Did we miss any links between POPs? All three said No,
though, in two cases we had a spurious link in our map.

138

AT&T’s Wide Area 
Backbone, 2002

Every city is connected to at  
least two others. Why?This is called a “hub and spoke”



A University Campus Topology
What is the driving factor behind 
how this topology is structured? 

What is the network engineer 
optimizing for?



You’re a network engineer…

• …in a warehouse-sized building… with 10,000 computers… 

• What features do you want from your network topology?



Desirable Properties
• Low Latency: Very few “hops” between destinations 

• Resilience: Able to recover from link failures 

• Good Throughput: Lots of endpoints can communicate, all at the 
same time. 

• Cost-Effective: Does not rely too much on expensive equipment like 
very high bandwidth, high port-count switches. 

• Easy to Manage: Won’t confuse network administrators who have to 
wire so many cables together!



Activity
• We have 16 servers. You can buy as many switches and build as 

many links as you want. How do you design your network topology?



Activity
• We have 16 servers. You can buy as many switches and build as 

many links as you want. How do you design your network topology?



Activity
• We have 16 servers. You can buy as many switches and build as 

many links as you want. How do you design your network topology?



A few “classic” topologies…



What kind of topology are your 
designs?



Line Topology
• Simple Design (Easy to Wire) 
• Full Reachability 
• Bad Fault Tolerance: any failure will partition the network 
• High Latency: O(n) hops between nodes 
• “Center” Links likely to become bottleneck.



Line Topology
• Simple Design (Easy to Wire) 
• Full Reachability 
• Bad Fault Tolerance: any failure will partition the network 
• High Latency: O(n) hops between nodes 
• “Center” Links likely to become bottleneck.



Line Topology

Center link has to support 3x the bandwidth!

• Simple Design (Easy to Wire) 
• Full Reachability 
• Bad Fault Tolerance: any failure will partition the network 
• High Latency: O(n) hops between nodes 
• “Center” Links likely to become bottleneck.



Ring Topology
• Simple Design (Easy to Wire) 
• Full Reachability 
• Better Fault Tolerance (Why?) 
• Better, but still not great latency (Why?) 
• Multiple paths between nodes can help 

reduce load on individual links (but still has  
some bad configurations with lots of paths 
through one link).



What would you say about these topologies?



In Practice:  
Most Datacenters Use Some Form of a Tree Topology



Classic “Fat Tree” Topology

Aggregation Switches

Core Switch (or Switches)

Access (Rack)  
Switches

Servers

Higher 
bandwidth 

links 

More 
expensive 
switches



Classic “Fat Tree” Topology
• Latency: O(log(n)) hops between arbitrary servers 

• Resilience: Link failure disconnects subtree — link 
failures “higher up” cause more damage 

• Throughput: Lots of endpoints can communicate, all at 
the same time — due to a few expensive links and 
switches at the root. 

• Cost-Effectiveness: Requires some more expensive links 
and switches, but only at the highest layers of the tree. 

• Easy to Manage: Clear structure: access -> aggregation 
-> core



Modern Clos-Style Fat Tree

Aggregate 
bandwidth 

increases — 
but all 

switches and 
are simple/

relatively low 
capacity 

Multiple paths between 
any pair of servers



Modern Clos-Style Fat Tree
• Latency: O(log(n)) hops between arbitrary servers 

• Resilience: Multiple paths means any individual 
link failure above access layer won’t cause 
connectivity failure. 

• Throughput: Lots of endpoints can communicate, 
all at the same time — due to many cheap paths 

• Cost-Effectiveness: All switches and links are 
relatively simple 

• Easy to Manage: Clear structure… but more links 
to wire correctly and potentially confuse.



There are many ways that datacenter networks differ from the Internet. 
Today I want to consider these three themes: 

1. Topology 

2. Congestion Control 

3. Virtualization

How are datacenter networks different from 
networks we’ve seen before?



Datacenter Congestion Control

Like regular TCP, we really don’t consider this a “solved problem” yet…



As you work on your CP3 — how might your 
design change if you were aiming for 

deployment in a datacenter rather than on the 
Internet?



Short messages 
     (e.g., query, coordination) 

Large flows 
     (e.g., data update, backup) 

Low Latency

High Throughput

Just one of many problems:  
Mice, Elephants, and Queueing

Think about applications: what are “mouse” connections and what 
are “elephant” connections?



Have you ever tried to play a  
video game while your roommate is 

torrenting?
Small, latency-sensitive  

connections Long-lived, large transfers



In the Datacenter
• Latency Sensitive, Short Connections: 

• How long does it take for you to load google.com? Perform a search? These 
things are implemented with short, fast connections between servers. 

• Throughput Consuming, Long Connections: 

• Facebook hosts billions of photos, YouTube gets 300 hours of new videos 
uploaded every day! These need to be transferred between servers, 
thumbnails and new versions created and stored. 

• Furthermore, everything must be backed up 2-3 times in case a hard drive 
fails!

http://google.com


TCP Fills Buffers — and needs them to be big to 
guarantee high throughput.

Th
ro

ug
hp

ut
Bu

ff
er

 S
iz

e

100%

B

B ≥ C×RTT

B

100%

B < C×RTT

Q
ue

ue
  

O
cc

up
an

cy

Elephant Connections fill up Buffers!



Full Buffers are Bad for Mice
• Why do you think this is? 

• Full buffers increase latency! Packets 
have to wait their turn to be transmitted. 

• Datacenter latencies are only 10s of 
microseconds! 

• Full buffers increase loss! Packets have 
to be retransmitted after a full round trip 
time (under fast retransmit) or wait until 
a timeout (even worse!)



TCP timeout

Worker 1

Worker 2

Worker 3

Worker 4

Aggregator

RTOmin = 300 ms 

•Lots of mouse flows can happen at the 
same time when one node sends many 
requests and receives many replies at once! 

Incast: Really Sad Mice!



When the queue is already full, even 
more packets are lost and timeout!



How do we keep buffers empty to 
help mice flows — but still allow big 
flows to achieve high throughput? 

Ideas?



A few approaches
• Microsoft [DCTCP, 2010]: Before they start dropping packets, 

routers will “mark” packets with a special congestion bit. The fuller 
the queue, the higher the probability the router will mark each 
packet. Senders slow down proportional to how many of their 
packets are marked.  

• Google [TIMELY, 2015]: Senders track the latency through the 
network using very fine grained (nanosecond) hardware based 
timers. Senders slow down when they notice the latency go up.

Why can’t we use these TCPs on the Internet?



I can’t wait to test your TCP 
implementations next week!



There are many ways that datacenter networks differ from the Internet. 
Today I want to consider these three themes: 

1. Topology 

2. Congestion Control 

3. Virtualization

How are datacenter networks different from 
networks we’ve seen before?

Later…



Imagine you are AWS or Azure

You rent out 
these servers



Imagine you are AWS or Azure

Meet your 
new 

customers



Um… hey….!
I’m gonna DDoS 
your servers and 
knock you offline!

I have a new 0day 
attack and am 

going to infiltrate 
your machines!



Isolation: the ability for multiple users or 
applications to share a computer system 
without interference between each other



Here comes the new kid…
I want to move my servers to your cloud, but I have a complicated set of 

firewalls and proxies in my network — how do I make sure traffic is routed 
through firewalls and proxies correctly in your datacenter?



Emulation: the ability of a computer program 
in an electronic device to emulate (or imitate) 

another program or device





virtualization refers to the act of 
creating a virtual (rather than actual) 
version of something, including 
virtual computer 
hardware platforms, storage devices, 
and computer network resources.

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Data_storage_device
https://en.wikipedia.org/wiki/Computer_network


Virtualization provides isolation between 
users and emulation for each user — as if 
they each had their own private network.

Makes a shared network feel like everyone has their own personal network.



Virtualization in Wide Area 
Networks: MPLS



Wide Area Virtualization: MPLS

San 
Francisco

New York

I want guaranteed 
1Gbps from SF to 

New York

AT&T national network



Label Switched Path (LSP)
• Fixed, one-way path through interior network 

• Driven by multiple forces 
• Traffic engineering 
• High performance forwarding 
• VPN 
• Quality of service

San 
Francisco

New York
Ingress Egress

Transit



Label Switching: Just add a new header!
• Key idea “virtual circuit” 

• Remember circuit switched network? 

• Want to emulate a circuit. 

• Packets forwarded by “label-switched routers” (LSR) 
• Performs LSP setup and MPLS packet forwarding 
• Label Edge Router (LER): LSP ingress or egress 
• Transit Router: swaps MPLS label, forwards packet 

Layer 2 header

Layer 3 (IP) header

Layer 2 header

Layer 3 (IP) header

MPLS label



MPLS Header

• IP packet is encapsulated in MPLS header 
• Label 
• Class of service 
• Stacking bit: if next header is an MPLS header 
• Time to live: decremented at each LSR, or pass through 

• IP packet is restored at end of LSP by egress router 
• TTL is adjusted, transit LSP routers count towards the TTL 

• MPLS is an optimization – does not affect IP semantics

IP Packet
32-bit 

MPLS Header
TTLLabel CoS S



Forwarding Equivalence Classes
FEC = “A subset of packets that are all treated the same way by a LSR”

Packets are destined for different address prefixes, but can be 
mapped to common path

IP1

IP2

IP1

IP2

LSRLSRLER LER
LSP

IP1 #L1

IP2 #L1

IP1 #L2

IP2 #L2

IP1 #L3

IP2 #L3



MPLS Builds on Standard IP
47.1

47.247.3

Dest Out
47.1 1
47.2 2
47.3 3

1

2
3

Dest Out
47.1 1
47.2 2
47.3 3

Dest Out
47.1 1
47.2 2
47.3 3

1

2

1

2

3

Destination based  
forwarding tables  
as built by OSPF, IS-IS, RIP, etc.



Label Switched Path (LSP)
Intf 
In 

Label 
In 

Dest Intf 
Out 

3 40 47.1 1 
 

 

Intf 
In 

Label 
In 

Dest Intf 
Out 

Label 
Out 

3 50 47.1 1 40 
 

 47.1

47.247.3

1

2

3
1

2

1

2
3

3Intf 
In 

Dest Intf 
Out 

Label 
Out 

3 47.1 1 50 
 

 

IP 47.1.1.1

IP 47.1.1.1



Virtualization in Local Area 
Networks: “Virtual LANs”



Broadcast domains with VLANs and routers
Layer 3 routing allows the router to send packets to the three different 
broadcast domains.



VLAN introduction
VLANs function by logically segmenting the network into different 
broadcast domains so that packets are only switched between ports 
that are designated for the same VLAN. 

Routers in VLAN topologies 
provide broadcast filtering, 
security, and traffic flow 
management.  



How do we achieve this? Headers!

MPLS Wraps entire packet in a new header to give a “label”. 
VLANs add a new field to Ethernet specifying the VLAN ID.



How do I let A broadcast to all other engineering 
nodes?

A

Broadcast packets 
on any port that is 
part of a the VLAN.

Not part of this VLAN



Back to our Datacenter



Back to our Datacenter



Knowing what you know now, how 
would you isolate Coke and Pepsi 

from each other?



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

Each server has its own private, virtual address 
within the Virtual Network for each client.



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.0.1.2

Each server has its own private, virtual address 
within the Virtual Network for each client.

Okay to use the same address — these servers are on virtual networks.



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2
to: 10.0.1.3to: 192.168.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3to: 192.168.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2
to: 10.0.1.3to: 192.168.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3

to: 10.0.1.3



SDN Switch at Every Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

to: 10.0.1.3

to: 10.0.1.3

This address does not exist in 
Coke’s virtual network!



Why implement in software on the host, rather than 
in real routers/switches like in WANs and LANs?

• Easier to update software. 

• Many companies use their own 
custom protocols/labels to implement 
their virtual networks. 

• There may be multiple clients sharing 
the same physical server! 

• “On host network”

SDN Switch

Server

10.9.0.3

192.168.1.4

10.2.0.3



What about Fanta’s Problem?

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

SDN Switch

Server

10.0.1.2 10.0.1.3 10.9.0.410.9.0.3

192.168.1.5 192.168.1.4 192.168.1.3 192.168.1.2

PROXY

“I want all traffic between any two nodes to go through my Proxy”

BOOM. Homework question.



Recap: How are datacenter networks different from 
networks we’ve seen before?

• Scale: very few local networks have so many machines in one place: 10’s of 
thousands of servers — and they are all working together like one computer! 

• Control: entirely administered by one organization — unlike the Internet, 
datacenter owners control every switch in the network and the software on 
every host 

• Performance: datacenter latencies are 10s of us, with 10, 40, even 100Gbit 
links. 

These factors change how we design topologies, congestion control, and 
perform virtualization…



Key Ideas
• Topology: Trees are good! 

• We care about: reliability, available bandwidth, latency, cost, and 
complexity… 

• Congestion Control: Queues are bad! 

• Keeping queue occupancy slow avoids loss and timeouts 

• Virtualization: Labels/New Headers are useful! 

• Creating “virtual” networks inside of physical, shared ones provides 
isolation and can emulate different network topologies without rewiring.


