

Wires – Boring?

- You are responsible for installing the networking in a new office building. What wires will you use:
- 1. Inside each office?
- 2. Connecting offices to the wiring closet?
- 3. Between floors?
- 4. Between buildings?

Transferring Information

- Information transfer is a physical process
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - Wireless signals (over the "ether")
- More broadly, electromagnetic waves
- Information carriers can also be
- Sound waves
- Quantum states
- · Ink & paper, etc.

What is Modulation?

- The sender sends an EM signal and changes in a way that the receiver can recognize this conveys information
- Ways to modulate a signal (think: sinusoidal wave)
- Change frequency, phase, or amplitude
- · Similar to AM/FM radio:
- But digital: we encode bits!
- · Many forms of modulation!
 - Basic AM, FM, and PM OK for "easy" environments
 - Wireless environments are very challenging uses much more aggressive forms of modulation

Why Different Modulation Methods?

Offers choices with different tradeoffs:

- Transmitter/Receiver complexity
- Power requirements, e.g., battery lifetime
- Bandwidth
- Medium (air, copper, fiber, ...)
- Noise immunity
- Range
- Multiplexing options

Today's Lecture

- Modulation
- Signal propagation
- Throughput limits
- Multiplexing
- Media: Copper, Fiber, Optical, Wireless
- Coding and modulation

Some "Wire" Questions

- · Is there a limit to the capacity of a wire?
- · How do the properties of copper, fiber, and wireless compare?
- Price, bandwidth, easy of deployment, ...
- · What limits the physical size of the network?
 - Or: how long can the wires be
- · Does the modulation technique matter?
- How can multiple hosts communicate over the same wire at the same time?
- \rightarrow How does signal propagation affect the signal quality and bitrate?

Limits to Speed and Distance

- Noise: "random" energy is added to the signal.
- · Attenuation: some of the energy in the signal leaks away.
- Dispersion: attenuation and propagation speed are frequency dependent. (Changes the shape of the signal)
- Effects limit the data rate that a channel can sustain. » But affects different technologies in different ways
- Effects become worse with distance. » Tradeoff between data rate and distance

Which symbol size is the best?

- · Throughput limits
- Multiplexing
- · Media: Copper, Fiber, Optical, Wireless
- · Coding and framing

Capacity of a Noisy Channel

- · Places upper bound on channel capacity, while considering noise
- · Shannon's theorem:
- C = B x log₂(1 + S/N) • C: maximum capacity (bps)
- B: channel bandwidth (Hz)
- S/N: signal to noise ratio of the channel (not in dB)
 S/N often expressed in decibels (db) ::= 10 log(S/N)
- · Example:
- Local loop bandwidth: 3200 Hz
- Typical S/N: 1000 (30db)
- What is the upper limit on capacity?
 C = 3200 x log₂(1 + 1000) = 31.9 Kbps

Today's Lecture

- Modulation
- Signal propagation
- Throughput limits
- Multiplexing
- Media: Copper, Fiber, Optical, Wireless
- Coding and framing

Supporting Multiple Channels

- What do we do if a transmission medium has a very large (spectral) bandwidth?
- · Example: fiber has several THz of usable bandwidth
- · Good news: we can send at Tbits/second!
- · Bad news: would be very expensive!
- · Also: user do not need that much bandwidth
- Frequency multiplexing means that different users use a different part of the spectrum.
- · Very common for fiber, wireless, and coax cable
- Similar to radio: 95.5 FM versus 102.5 FM radio station

Time Division Multiplexing

- · Different users use the wire at different points in time.
- Aggregate bandwidth also requires more spectrum.

Frequency Multiplexing

- Remember: we send data by modulating a carrier signal with a certain (high) frequency
- · How about if different users use carriers with a different frequency?
- · Moves the signal around in the spectrum
- There are relatively simple EE techniques to do this ("mixing")
- This is called Frequency Division Multiplexing (FDM)
- The alternative is Time Division Multiplexing (TDM)
 - Multiple users share the same carrier (i.e., on same frequency)
- Tradeoffs are complex (out of scope)

Copper Wire 1000Base-Maximum Data Rate **Today's Lecture** 100 meters 100 meters RJ45 Unshielded twisted pair (UTP) · Two copper wires twisted - avoid antenna effect Modulation. · Grouped into cables: multiple pairs with common sheath Signal propagation Category 3 (voice grade) versus category 7 Throughput limits Cheapest technology Multiplexing. · Coax cables. · Media: Copper, Fiber, Optical, Wireless. · One connector is placed inside the other connector · Holds the signal in place and keeps out noise · Gigabitd up to a km

Fiber Types

- · Multimode fiber.
- 62.5 or 50 micron core carries multiple "modes"
- Used at 1.3 microns, usually LED source
- Subject to mode dispersion: different propagation modes travel at different speeds
- Typical limit: 1 Gbps at 100m
- Single mode
- 8 micron core carries a single mode
- Used at 1.3 or 1.55 microns, usually laser diode source
- Typical limit: 10s of Gbps at 60 km or more
- · Still subject to dispersion

Wavelength Division Multiplexing

- Send multiple wavelengths through the same fiber.
- · Multiplex and demultiplex the optical signal on the fiber
- Each wavelength represents an optical carrier that can carry a separate signal.
- · E.g., 16 colors of 2.4 Gbit/second
- · Like radio, but optical and much faster

Wires: Things to Remember

- Bandwidth and distance of network links is limited by physical properties of media.
- Attenuation, noise, dispersion, ...
- Network properties are determined by transmission medium and transmit/receive hardware.
- · Nyquist gives a rough idea of idealized throughput
- Can do much better with better encoding
 Especially important in wireless
- Shannon: $C = B \times \log_2(1 + S/N)$
- Multiple users can be supported using space, time, or frequency division multiplexing.
- · Properties of different transmission media.

Outline

- Encoding and decoding
 - · Translate between bits and digital signal
- Framing
 - · Bit stream to packets
- · Dealing with errors
- · Error detection and correction

From Signals to Packets Packet Receiver Sender (Transmission Error control Packets Header/Body Header/Body Header/Body Framing 0 0 1 0 1 1 1 0 0 0 1 Bit Stream Encoding "Digital" Signal Modulation Analog Signal

Datalink Functions

- · Encoding: change bit stream before transmission
- Framing: encapsulating a network layer datagram into a bit stream.
 Add header, mark and detect frame boundaries
- · Error control: error detection and correction to deal with bit errors.
 - · May also include other reliability support, e.g. retransmission
- · Flow control: avoid that sender outruns the receiver
- Media access: controlling which frame should be sent next over datalink.
- Hubbing, bridging: extend the size of the network

Why Do We Need Encoding?

- · Keep receiver synchronized with sender.
- · Create control symbols, in addition to regular data symbols.
- E.g. start or end of frame, escape, ...
- Error detection or error corrections.
 - Some codes are illegal so receiver can detect certain classes of errors
 - Minor errors can be corrected by having multiple "adjacent" bit sequences mapped to the same data symbol
- Encoding can be done one bit at a time or in multi-bit blocks, e.g., 4 or 8 bits.
- · Encoding can be very complex, e.g. wireless

· Circuitry must run twice as fast

Example: Ethernet

- · Uses Manchester encoding, which turns each bit into two bits: 10 or 01
- · Very robust with a transition for every bit but doubles spectrum use!
- Uses preamble of 7 bytes (10101010 5 MHz square wave) followed by one byte of 10101011
- Allows receivers to recognize start of transmission after idle channel

preamble datagram length more stuff

- Challenge: what happens if the user data includes of the above bit sequences?
- Bit stuffing: sender inserts extra bit in sequence (details omitted)

Example: 4B/5B Encoding

- Symbols of 4 data bits are encoded as 5 line bits, so 100 Mbps (data) results in 125 Mbps on the wire (25% overhead)
- · Encoding ensures there are no more than 3 consecutive 0's
- · Allows the use of an efficient modulation scheme
- Provides 16 data codes (4 data bits), 8 control codes
- Data codes: represent 4 data bits each
- · Control codes: idle, begin frame, etc.
- Other 8 codes are invalid
- Example: FDDI.

4E	8/5B Er	icod	ling	
Data	Code	Data	Code	
0000	11110	1000	10010	
0001	01001	1001	10011	
0010	10100	1010	10110	
0011	10101	1011	10111	
0100	01010	1100	11010	
0101	01011	1101	11011	
0110	01110	1110	11100	
0111	01111	1111	11101	Di
From	To			

