
15-441: Computer Networks
Recitation 1

P1 Lead TAs: Mingran Yang, Alex Bainbridge

Agenda

1. Project 1 Checkpoint 1
2. Lex/Yacc
3. Reading the RFC
4. Small group exercise
5. Q&A

Project 1: Liso Web Server

You will be building a web server that will handle multiple
concurrent connections and support a subset of HTTP/1.1!

For 15-641 students, you will also support HTTPS and CGI
protocols!

Project 1: Quick reminder

CP Grade Deadline

1 15% 25% Sep 6 Sep 10

2 50% 75% Sep 20 Sep 27

3 35% Sep 27

15-441
15-641

Start early! Do not wait until the last day!

The Project 1 starter code will be released later today.

Remember building an HTTP/1.0 Proxy in
15-213?

For this project, you will instead:

● Support a subset of HTTP/1.1 (writeup - pg 2, sec 2.2)
● Use select()! This is very important! Do not use threads to

handle multiple clients.
● Parse requests using Lex and Yacc

Checkpoint 1 Due Sep 6, 2019

What you need to do (writeup - pg 4, sec 3):

1. Use select() to handle up to 1024 concurrent connections. [see
ref. 1, 2]

2. Use lex/yacc to parse received requests, and check if they are
correctly formed. [see ref. 3]

3. Echo well formed requests back to client, or return 400 error
code (BAD_REQUEST) for incorrectly formed requests

Select()
1. Utilize the man page [ref. 1]
2. Read the relevant section in CSAPP, the 15-213 textbook,

to gain an understanding of how select() works.
Remember that you must cite everything you take from
CSAPP! [ref. 2]

3. Review section 7.2 in Beej’s guide [ref. 3] to see
examples. This is a great resource for most other topics in
this class, so use it extensively!

Lex and Yacc
The basic flow is this:

Socket Tokenizer Parser Request
Handler

Read the buffer and
pass the data in as a

byte stream
(see lisod.c & parse.c)

Tokenize the input
based on some

defined rules
(see lexer.l)

Parse token stream
matching your grammar

into some construct
(see parser.y)

Generated by the
Lex code

Generated by the
Yacc code

Lex
● It's a program that breaks input into sets of "tokens," roughly

analogous to words.
● The general format of a Lex source file is:

{definitions} Definition of tokens
%%
{rules} Handler for detected token
%%
{user subroutines} C code (Process tokens)

● The absolute minimum Lex program is thus %% (no definitions,
no rules) which translates into a program which copies the input
to the output unchanged.

Yacc
● YACC can parse input streams consisting of tokens with certain

values.
● YACC has no idea what 'input streams' are, it needs pre- processed

tokens.
● A full Yacc specification file looks like:

{declarations} Types of each token
%%
{rules} Grammar
%%
{programs} C code

● The smallest legal Yacc specification is
%%
{rules}

Quick example of using Lex/Yacc

This is taken from the Lex/Yacc reference at
the end of the slide deck! [ref. 4]

Lex file - the tokenizer!
The tokens defined

in the language
(rules section only)

Yacc file - the {rules} section
Tells Yacc to look for commands. Notice the
recursion - this breaks down a series of commands
into single commands

Defines what a command is - referencing 2 other
rules for the heat on/off command or the temp target
command

Defines the heat command (strictly made up of 2
tokens returned in Lex), and what to do when that
token is recognized

Defines the temperature command (strictly made
up of 3 tokens returned in Lex), and what to do
when that token is recognized

Lex and Yacc tips

Read Reference 3 - it continues beyond this to
make a more complex grammar

Break down the starter Lex/Yacc code into its sections and
start figuring what it already does, so you can add the missing
functionality

RFCs
What is an RFC?

A Request for Comments (RFC) is a formal document from the Internet
Engineering Task Force (IETF) that is the result of committee drafting and
subsequent review by interested parties. Some RFCs are informational in nature.
Others are intended to become Internet standards. A few are even intentionally
humoristic (Hyper Text Coffee Pot Control Protocol, RFC 2324)

Which RFCs should I take a look at for P1?

○ HyperText Transport Protocol (HTTP) 1.1 RFC 2616
○ Transport Layer Security RFC 2818
○ Common Gateway Interface RFC 3875

RFC 2616 (HTTP/1.1) : 21 sections, 176 pages, .txt doc

● Luckily for us, there is a table of contents!
● Read the RFC selectively:

○ Rapidly skim through the whole RFC at first, to get a sense of the
document’s structure and the type of information it contains

○ Identify and select which sections are important for what you are
trying to build

○ Read the important sections very carefully, the RFCs contain a lot
of information.

● You may want to print the RFCs, and mark them up to indicate which parts
are important for this project, and which parts are not needed

How to read an RFC

1. Introduction
2. Notational Conventions and Generic

Grammar
3. Protocol Parameters
4. HTTP Message
5. Request
6. Response
7. Entity
8. Connections

9. Method Definitions
10. Status Code Definitions
11. Access Authentication
12. Content Negotiation
13. Caching in HTTP
14. Header Field Definitions
15. Security Considerations
16 - 21. Acknowledgment, Appendices,

 Index, etc.

Which parts of the RFC are the most useful to figure out the requirements of a
good HTTP/1.1 request? And the kind of bad requests you should test for?

The RFC 2616 table of contents contains sections and subsections: below are
the names of the sections. Which sections seem important to you?

RFC 2616, P1CP1

RFC 2616, P1CP1
Which parts of the RFC are the most useful to figure out the requirements of a
good HTTP/1.1 request? And the kind of bad requests I should test for?

The RFC 2616 table of contents contains sections and subsections: below are
the names of the sections. Which sections seem important to you?

1. Introduction
2. Notational Conventions and Generic

Grammar
3. Protocol Parameters
4. HTTP Message
5. Request
6. Response
7. Entity
8. Connections

9. Method Definitions
10. Status Code Definitions
11. Access Authentication
12. Content Negotiation
13. Caching in HTTP
14. Header Field Definitions
15. Security Considerations
16 - 21. Acknowledgment, Appendices,

 Index … etc.

Class exercice

Read/Skim through the Request section of RFC 2616 (5 pages)

Discuss with your neighbors and try to come up with examples of Requests, both
bad and good, you would use to test your CP1 web server

Possible answers
(Non-exhaustive)

● Good Requests
○ GET / HTTP/1.1\r\n\r\n
○ GET / HTTP/1.1\r\nUser-Agent: 441UserAgent/1.0.0\r\n\r\n #One header
○ \r\nGET / HTTP/1.1\r\nUser-Agent: blablabla\r\n blablabla\r\n blablabla\r\n

HiIAmANewLine\r\n\r\n #Multiple line header

● Bad Requests
○ GET\r / HTTP/1.1\r\nUser-Agent: 441UserAgent/1.0.0\r\n\r\n # Extra CR
○ GET / HTTP/1.1\nUser-Agent: 441UserAgent/1.0.0\r\n\r\n # Missing CR
○ GET / HTTP/1.1\rUser-Agent: 441UserAgent/1.0.0\r\n\r\n # Missing LF

Writing tests: some advice

● The starter code contains an example of testing script : cp1_checker.py
 It can be run as follows:

#Start your server first
 ./lisod <HTTP port> <HTTPS port> <log file> <lock file> <www folder> <CGI script path>
<private key file> <certificate file>

 The arguments in blue are useless for CP1 but should still be included
-> dummy values

#Start the testing script
 python cp1_checker <server ip> <server port> <# trials> <# writes and reads per trial>
<#connections>

Writing tests: some advice

● The provided testing script can be useful for you as a starting point.
You will of course need to expand it, and add your own tests
You will also be able to use a real browser later in P1

NB: Python allows your testing script to be short and simple. No need to write a ton of
code! You are of course also allowed to use any other coding language.

● Comments on the provided testing script:
socket library:

s = socket(AF_INET, SOCK_STREAM) #creates a new socket (IPv4, TCP)
s.connect((serverHost, serverPort)) #connects to your server
s.send(random_string) #sends data to your server
rdata = s.recv(random_len) #receives random_len bytes or less

 from your server and puts it into rdata
s.close #closes the connection to your server

Writing tests: other tools

Apart from the provided testing script, you can also
manually test your server using other tools, like
telnet and netcat.
These are command-line tools that allow you to send data to any web server
(including yours!) and can help do quick, manual tests before writing a real one in the
testing script. See references 5-7 for information about these tools.

For netcat, a simple command to initiate a connection to your running Liso server and
send a simple HTTP request:

 $ nc <server IP> <server HTTP port>
 GET / HTTP/1.1\r\nUser-Agent: 441UserAgent/1.0.0\r\n\r\n

 <Liso-CP1 server’s response (400 or echo)>

Q & A

References
1. http://man7.org/linux/man-pages/man2/select.2.html
2. CSAPP section 12.2(15-213 textbook)
3. Beej’s Guide: https://beej.us/guide/bgnet/html/multi/index.html
4. http://www.tldp.org/HOWTO/Lex-YACC-HOWTO-4.html
5. https://linux.die.net/man/1/telnet
6. CSAPP pgs. 986-987
7. https://linux.die.net/man/1/nc

http://man7.org/linux/man-pages/man2/select.2.html
https://beej.us/guide/bgnet/html/multi/index.html
http://www.tldp.org/HOWTO/Lex-YACC-HOWTO-4.html
https://linux.die.net/man/1/telnet
https://linux.die.net/man/1/nc

