
15-441: Computer Networks
Recitation 2

P1 lead TAs: Mingran Yang, Alex Bainbridge

Friday, September 6 2019

Agenda

1. Project 1 Checkpoint 2
2. git - version control and other things
3. Debugging Tips
4. Intro to gdb and valgrind + class exercices
5. Q&A

Project 1: Quick reminder

CP Grade Deadline

1 15% 25% Sep 6 Sep 10

2 50% 75% Sep 20 Sep 27

3 35% Sep 27

15-441
15-641

Ckpt 2 is harder than Cpkt 1
Do not wait until the last day!

15441

15641

Checkpoint 2 Due Sep 20/27, 2019

What you need to do (writeup - pg 6, sec 4 + RFC 2616):

1. Respond to properly formatted HTTP HEAD and GET requests
2. Support five HTTP 1.1 error codes (default: 400)

i. 400 (Bad Request)
ii. 404 (Not Found)
iii. 408 (Timeout)
iv. 501 (Unsupported Method)
v. 505 (Wrong HTTP version).

vi. Optional: 418 (I’m a Teapot)
3. Handle concurrent connections using select()
4. Handle pipelined requests.

404
408

501

400
418

????

Git
● Git is a version-control system to track changes to your code

● It contains features that makes merging code from different authors easy
(though we won’t be discussing this for P1)

● Commands:
○ git init Initialize a new Git repository locally
○ git clone <url> Clone a remote repository located at <url>
○ git add example.txt Add changes to example.txt to staging

area (i.e. pre-commit area)
○ git add -A Add changes to all files (including new files) in

your repository to staging area
○ git commit -m “Hello” Place whatever is in the staging area into a commit
○ git push origin master Push most recent commit to online repository (such as

one on Github)

Git: advanced
● Ignore certain files with a .gitignore (helps your git repo not become too large). Make sure you don’t

ignore important files (e.g. C files, header files, Makefile)

● Git tags allow you to mark a certain commit of the Git repo. A git tag does not know of any commits
that occur after the tag is created. Tags are used for marking version releases (e.g. v2.0.1)

git tag -a checkpoint-<num>-m<message>[<commit hash>]

● Find out more about Git in [ref 5]

Ignore foo.txt
foo.txt

Ignore bar directory except bar/hello.c
bar/*
!/bar/hello.c

Ignore all SQL files
*.sql

Debugging Tips

● Enable all warnings when compiling with gcc (-Wall/ -Werror … etc) [ref 1]

● Simple but most of the time efficient method: print statements (especially since
your server is single threaded)

● Debugger for C: gdb [ref 2]

● Use valgrind to check for memory leaks [ref 4]

● Utilize and expand provided tests. NB: in ckpt2, you can start testing with your
own browser

gdb: Introduction/Reminder

What is gdb?

GNU debugger (gdb) is a debugger for C. It uses a command line interface. It can help you get
information about the following:

● If a SEG FAULT happened, then what statement did the program crash on?
● If an error occurs while executing a function, what line of the program contains the call to

that function, and what are the arguments?
● What are the values of program variables at a particular point during execution of the

program?
● What is the result of a particular expression in a program?

gdb: Getting started
● Compiling:

To prepare your program for debugging with gdb, you must compile it with the -g flag

● Entering and Quitting gdb:
 gdb executable
 quit

● Basic commands (more in [ref 3]):
○ run starts running the program in gdb
○ bt (backtrace) figure out where the program was when it crashed (very useful for segfaults)
○ break spot in your program where you would like to temporarily stop execution

■ break function
■ break filename: linenumber

○ step continue to next source line
○ continue continue to next breakpoint
○ p/d i print variable i as a signed int
○ p/x i print variable i in hex
○ p/d y[i] print the ith element of y as a signed int

Battleship Exercise

● Download battleship.c from
https://github.com/inespot/15441-recitation2

● This is a simplified version of a 1-player Battleship game

● Using gdb, find the 4 bugs in it

https://github.com/inespot/15441-recitation2

1. Lines 10 & 11: <= should be <

2. Line 48: Need to populate board with hidden_water

3. Lines 43 & 46: Should be sizeof(int *) and sizeof(int) respectively

4. Line 53: Need to initialize i to 0

Battleship Bugs

valgrind: Introduction/Reminder
What is valgrind?

Provides a number of debugging and profiling tools that help you make your programs faster and more
correct.

The most popular of these tools is called Memcheck. It can detect many memory-related errors that
are common in C programs and that can lead to crashes and unpredictable behaviour.

How to detect memory leaks with valgrind?

>> valgrind --tool=memcheck --leak-check=yes --show-reachable=yes myprog arg1 arg2

NB: Your program will run much slower than normal, and use a lot more memory.

What a memory leak output will look like:

● Download vector.c from
https://github.com/inespot/15441-recitation2

● Use valgrind to find the 5 bugs

Vector exercice

“With”
in French

https://github.com/inespot/15441-recitation2

1. In main(), you need to give x a value

2. In main(), you need to free x after calling VectorSet()

3. In main(), you need to call VectorFree(x) before exiting

4. In VectorCreate(), you need to set v’s length before returning

5. In ResizeArray(), you need to free arry before returning

Vector Bugs

Q & A

References

[1] GCC Warning options: https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

[2] gdb manual: https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_toc.html

[3] gdb Cheatsheet: https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

[4] Valgrind manual: http://valgrind.org/docs/manual/manual.html

[5] Git Handbook: https://guides.github.com/introduction/git-handbook/

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_toc.html
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://valgrind.org/docs/manual/manual.html
https://guides.github.com/introduction/git-handbook/

