
15-441: Computer Networks
Recitation 3

P1 Lead TAs: Mingran Yang, Alex Bainbridge

Agenda

1. Project 1 Checkpoint 3
2. Advanced Git
3. Q&A

Checkpoint 3 Due Sep 27, 2019

This is only for 15-641 students!

You will need to
• daemonize your server
• Setup SSL/TLS
• Setup CGI

Daemonization (Warning)

• YOU NEED TO DO THIS FIRST
• NOT DOING THIS MAY RESULT IN YOUR GRADE BEING A “0”

• Many of our tests rely on your server being daemonized
• We provide the skeleton to do it
• All you need to do is add in some longjumps and resource

management

Daemonization (cont)

• Reminder: “rehashing a server” means you actually need to restart it
and reload any configuration files
• This is commonly used when changing things such as

configuration files, SSL certificates, etc!
• You should not start a new process

• You should not just return either.
• You need to do some work

• Close your resources and open new ones.

CGI For P1

• CGI allows for your server to become more responsive and interactive
• In this context you will use CGI to execute python scripts

• You need to setup the python script for success by setting all the correct variables
• Make sure that you aren’t leaking memory or data.

SSL/TLS for P1

• You will need to get a certificate from “project1.myheartisinthenetwork.com”
• This will be used in the SSL library like the sample code we provide
• You will need to track which of your connections are https and which are

http.

http://project1.myheartisinthenetwork.com/

CGI: Generating Dynamic Content

● Web server forward request plus additional information to an external
application using a Common Gateway Interface

○ Where the user is connecting from, other user information

○ The CGI can access other data sources, e.g., databases

● CGI returns a response for the browser, e.g., HTTP document
Graphic: https://www.oreilly.com/openbook/cgi/ch01_01.html

https://www.oreilly.com/openbook/cgi/ch01_01.html

Advanced Git

Size Limits

• Autolab allows maximum of 5mb per submission
• It is up to you to manage your size of your repository
• Size can increase drastically with

• Git add .
• Git add *

• Make sure to
• add only the necessary files• use git ignore for your object files – Stated in the writeup as a requirement

Fixing a Bloated Repo

• Find your large files and commits
• Git rev-list [1]

• Removing your cached files
• Git rm [2]

https://stackoverflow.com/questions/10622179/how-to-find-identify-large-commits-in-git-history
https://help.github.com/en/articles/removing-files-from-a-repositorys-history

Git Rebase

• Applies commits onto a new
starting point.

• Useful when features on
one branch are desired on
another branch.

• git rebase [3]

https://git-scm.com/docs/git-rebase

Git Workflow
You all know this already

What if I told you there
were hidden stages?

Git Hooks

Git Hooks
• Hooks allow for additional actions to

be run at various points in the
pipeline [4]

• There are three most common ones
• Pre-commit• Pre-receive• Post-receive

• We will be focusing on Pre-commit

https://medium.com/@suthagar23/git-hooks-keep-the-code-quality-119e6feb511e

Pre-Commit

• Pre-commit.com offers a framework as well as lots of tools that you can
utilize for your projects [5]

https://pre-commit.com/

Pre-commit Capabilities
• Automatic Style Linting

• You can also provide flags to tell it to fix your style automatically• *Note: this isn’t all you need to do for our style rubric. But at least you won’t have to
manually fix every line over 80 chars yourself J• Can run on more than just code, but also json and some data files!

• Library Management
• Test Suite Running
• Vulnerability Detection
• Static Code Analysis

Pre-commit Setup
• Install pre-commit
• Create your config file
• Identify needs you want to address
• Find hooks that you will utilize
• Investigate their respective settings

Pre-commit Setup
• Installation

• brew install pre-commit
• pip install pre-commit

• Check installation
• pre-commit --version

• Create ".pre-commit-config.yaml” file in top level directory
• Add in the hooks and settings desired

Sample YAML
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks

rev: v2.3.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace

- repo: https://github.com/psf/black
rev: 19.3b0
hooks:
- id: black

Sample YAML Explained
• The repo: https://github.com/pre-commit/pre-commit-hooks has 3

hooks we will be using

• The repo: https://github.com/psf/black has 1 hook we will be using

• None of the hooks have special settings activated

https://github.com/pre-commit/pre-commit-hooks
https://github.com/psf/black

Finding Hooks
• Hooks will be in Github, and most of them can be found through

Google search
• Here’s a good list to get started : https://pre-commit.com/hooks.html

• You may need to check on a given hook which languages it
supports.

• Some are language dependent some aren’t

https://pre-commit.com/hooks.html

Q & A

References
1. https://stackoverflow.com/questions/10622179/how-to-find-identify-large-

commits-in-git-history
2. https://help.github.com/en/articles/removing-files-from-a-repositorys-history
3. https://git-scm.com/docs/git-rebase
4. https://medium.com/@suthagar23/git-hooks-keep-the-code-quality-

119e6feb511e
5. https://pre-commit.com/

https://stackoverflow.com/questions/10622179/how-to-find-identify-large-commits-in-git-history
https://help.github.com/en/articles/removing-files-from-a-repositorys-history
https://git-scm.com/docs/git-rebase
https://medium.com/@suthagar23/git-hooks-keep-the-code-quality-119e6feb511e
https://pre-commit.com/

