
15-441: Computer Networks
Recitation 4

Agenda

1. Project 1 Quick Reminder
2. Partners and Group
3. Dividing work in a team
4. Writing code in a team
5. Activity: Play with Git
6. Q&A

Project 1: Quick reminder

CP Grade Deadline

2 75% Sep 27

15-441

Start early! Do not wait until the last day!

15-641

CP Grade Deadline

3 35% Sep 27

Partners and Group

In Project 2 and Project 3, you will need to complete the project
in group of 2.

641 Students are allowed to form team with 441 students, and
441 students are also allowed to form team with 641 students :)

How to find partners?
There is a piazza post for you to search partner!

Dividing Work in a Team

1. Read through the project writeup and list tasks that you need
to finish as a team

2. Divide those tasks based on their relevance
3. It is better that each student could write and test their code

individually, and then combine their code together to form an
entire system

Some Suggestions When Dividing Work

1. Keep modularity in mind
2. Divide the work properly before start developing
3. It is suggested that each student contributes equally to the

project
4. If your project partner is not contributing to the project, please

contact the course instructor

Writing Code in a Team
Some suggestions… [1]

1. Use version control
2. Each developer should update and commit to the version

control after finishing one task
3. Each developer should test the new feature or bug fix one is

adding before commit to the repository (make sure it doesn’t
contain trivial bugs before commit! Or it will be a disaster for
your teammates...)

Using git in a Team

Basic Idea: [2]
It is suggested that each developer
should
● Checkout a new branch
● Work on new branch
● Merge changes back to master

branch

Step1: Create a new branch to work on
When naming feature branches, a good best practice is to start
with you initials, then the feature name (e.g. myname_newfeature)

Step2: Write Some Code and Commit
Commit your code after finishing some milestones. But make sure
to check for trivial bugs before commit.

Step3: Fetch When You’re Done
When you’re ready to merge your features back into the master
branch, you could do fetch. Fetching makes sure you’re up to date
when merging changes back into master.

Step4: Squash Your Commits and
Get Ready to Merge (Optional)

Now you’ll rebase your changes into the master branch. This
effectively condenses down all the commits you’ve made on your
feature branch (myname_featurename) into one commit.

This command will open an interactive rebase tool, and you can
work on that.

Step5: Merge Your Changes

Switch to the master branch in preparation of merging your
changes. After merging you could push your local master branch
to remote.

Step6: Cleanup

With your changes merged into the master branch, you can safely
delete your feature branches.

Activity: Play with Git!
● Set up a new repository or clone from a existing one:

This will clone a repository into your target-dir.
● View local branches:

● Create a new local branch:

$ cd target_dir/

$ git clone https://github.com/vvchd/Computer-Networks-Playground.git

$ git branch

$ git branch develop

● Checkout to your own branch and develop!

● View and commit your changes

The changes on your local `develop` branch will be pushed to remote
repository. Then go to GitHub to check your new branch as well as the
changes.

Activity: Play with Git! (2)

$ git checkout develop
$ echo "this is a new line" >> README.md

$ git status
$ git add .
$ git commit -m “first commit to develop branch”
$ git push origin develop

● Navigate to the remote repository

Activity: Play with Git! (3)

● File a new Pull Request

Activity: Play with Git! (4)

● File a new Pull Request cont.

Activity: Play with Git! (5)
destination / source branch

● original commit msg
● commit hash
● changes

● File a new Pull Request cont.

Activity: Play with Git! (6)

After reviewing code and
resolving conflicts, if any,
merge your PR here

Add your teammate
as reviewer

● You can check changes, after merging “develop” into “master” branch

Activity: Play with Git! (7)

Commit for merge

Original commit from
`develop` branch

Q & A

References
1. How do programmers work together on a project:

https://stackoverflow.com/questions/3000190/how-do-programmers-work-toge
ther-on-a-project

2. Using git in a team: a cheatsheet
https://jameschambers.co/writing/git-team-workflow-cheatsheet/

https://stackoverflow.com/questions/3000190/how-do-programmers-work-together-on-a-project
https://stackoverflow.com/questions/3000190/how-do-programmers-work-together-on-a-project
https://jameschambers.co/writing/git-team-workflow-cheatsheet/

