
15-441: Computer Networks
Recitation 5

P2 Lead TAs: Kartik Chitturi, Ines Potier

Agenda

1. Introduction to Project 2
2. CP1 Starter Code
3. Checkpoint 1
4. Using Vagrant
5. Packet Captures & Wireshark
6. Q&A

Project 2: TCP in The Wild

You’ve learned about TCP, the Internet’s transport protocol.

In Project 2, you’ll first implement a transport algorithm very
similar to TCP Reno, and then design your own congestion
control algorithm!

Project 2: Quick reminder

CP Grade Deadline

1 33% Oct 16

2 33% Oct 30

3 33% Nov 6

The deadlines and weights are the same for 441 and 641 this time.

Start early! Do not wait until the last day!

Relevant Textbook Sections

The textbook (Computer Networks: A Systems Approach)
contains very useful information for Project 2.

For CP1, read Section 5.2 carefully, especially the on
adaptive retransmission (ref. 1,2)

For CP2, read Section 6.3, on TCP Congestion Control
(ref.3)

CMU-TCP

1. You will build your TCP protocol on UDP sockets, which
are not reliable or ordered, have no control over how fast
data is transmitted, and do not establish a connection.

2. You will augment those UDP sockets with the missing
features to create a reliable, ordered transport protocol
with connection establishment and termination.

3. You will implement a congestion control algorithm on top
of the transport protocol

Checkpoint 1
Checkpoint 2 + 3

Starter Code
The /15-441-project-2 directory in the handout includes:
1. /build - empty (build artifacts like .o files go here)
2. /inc - contains the header (.h) files for the included code
3. /src - contains the starter code source files
4. /tests - empty (you will need to write your own tests)
5. /utils - includes a Lua plugin and shell script for

generating packet captures
6. Makefile - compiles your project
7. gen_graph.py - a Python script to generate graphs from

 packet captures. (Not needed for CP1)
8. readme.txt - empty (describe your project here)
9. tests.txt - empty (describe your tests here)

Core TCP Files (writeup pg.3)
1. cmu_tcp.c/h - main socket functions required of your TCP

socket
a. Don’t change the function signature of the 4 core

functions (socket, close, read, write)
b. You should change the implementation of the 4 functions

and can add more helper functions

2. backend.c - the code to emulate the buffering and sending
of packets

Important Helper Files (writeup pg.3)
1. cmu_packet.h - DO NOT MODIFY! Contains basic packet

format and header
2. grading.h - DO NOT MODIFY! Useful constants for your

protocol, but will be changed in our testing, so
you shouldn’t be hard-coding or relying on
specific values of these

3. client/server.c - Applications using the client and server
sides of your protocol. Utilize these for testing
but don’t place anything important here, as we
will not use these for our tests. (but tests will be
similar to this).

What the Starter Code Does:

The starter code implements Stop-and-Wait transmission!
- It transfers data reliably and in order
- It is very slow!
- It does not have a handshake or a connection teardown

- (if 1st or last packet is lost, transfer is incorrect)
- It recovers from loss very slowly (uses a fixed

retransmission timeout (RTO) of 3 seconds)

Checkpoint 1 Due Oct 16, 2019

What you need to do (writeup - pg 2-5, sec 4):

1. Implement the TCP Handshake and Teardown (ref. 1)
a. Handshake before data transfer starts, Teardown when the

connection is terminated
b. Should happen in the constructor and destructor for

cmu_socket
2. Implement improved RTT (round-trip time) estimation

a. Implement adaptive RTO by estimating RTT with either
Jacobson/Karels Algorithm or Karns/Partridge algorithm (ref. 2)

Task #2

You will implement Adaptive Retransmisson

- TCP retransmits each segment if an ACK is not received
within a certain period of time
- This is hard-coded in the starter code as 3 seconds

- TCP timeout is a function of the round-trip time (RTT)
- You will use Jacobson/Karls Algorithm or Karn/Partridge

Algorithm to implement adaptive retransmission
- Both of these are described in the textbook (ref. 2)

CP1 Hand-In Requirements
Read Section 7 of the write-up very carefully!

1. Your handin must be a git repo, with the relevant commit tagged
with checkpoint-1.

2. Your submission tarball should include a top-level directory which
must be named 15-441-project-2

3. That directory will contain your Makefile, readme.txt, tests.txt,
graph.pdf and all your source code, organized as they are in the
starter code. (Do not submit .o files or executables!)

4. Make sure you compile your code with the gcc flag “-fPIC” in your
Makefile

5. No files should starter with the word “grader”

Using Vagrant

You will do all of your development and testing locally on your
own machine using VMs. You will need to install Vagrant and
VirtualBox on your machine. (ref. 4, 5)

The starter code handout also includes a Vagrantfile, that
defines 2 VM’s, ‘client’ and ‘server’. Anything in the same
directory as the Vagrantfile (which is /15-441-project-2 in the
handout) will be synced to the /vagrant directory in both VM’s.

Using Vagrant

Important Vagrant commands to know:
1. vagrant up - will initialize/boot up the VMs
2. vagrant ssh client/server - SSH into the client/server VM
3. vagrant suspend/halt - sleep/power down the VMs when

you are done with development
a. If you shut down your local machine, use halt. If your

machine is just going to sleep, use suspend.
Otherwise, you can corrupt your VMs!

4. vagrant destroy - will completely delete the VMs

Packet Captures

You will want to capture packets sent between the VMs
during your tests to analyze and debug your code. 2 tools are
installed on the VMs to help you do so: tcpdump and
Wireshark (in its CLI version tshark). (ref. 6,7)
Also, in the /utils directory of the starter code, we provide 2
files to help with capturing packets:
1. capture_packets.sh - A simple program to start and stop

packet captures, and analyze the result using tshark
2. tcp.lua - A Lua plugin so Wireshark can analyze the

custom CMU_TCP packet format

Using capture_packets.sh & Wireshark

capture_packet.sh provides 3 commands:
1. start <name>.pcap - start capturing packets into the given

file
2. stop <name>.pcap - stop capturing packets into the given

file
3. analyze <name>.pcap - uses Wireshark to analyze the

provided pcap file and generates a CSV containing all the
headers of captured packets.

Example

To capture packets using the starter code client/server.c:
vagrant@server$ make
vagrant@server$ utils/capture_packets.sh start cap.pcap
vagrant@server$./server

vagrant@client$./client

vagrant@server$ utils/capture_packets.sh stop cap.pcap
vagrant@server$ utils/capture_packets.sh analyze cap.pcap

Server VM

Server VM

Client VM

This will generate
a cap.pcap file
and a CSV file of
the header fields
of each captured
packet.

Using Wireshark GUI

You can also install the GUI-based version of Wireshark to
analyze the PCAPs with a better UI.

The provided Lua plugin /utils/tcp.lua needs to be placed in
Wireshark’s plugins folder (ref. 8), and then you can open the
.pcap file you created in Wireshark to see all captured
packets.

Q & A

References
1. https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination

2. https://book.systemsapproach.org/e2e/tcp.html#adaptive-retransmission

3. https://book.systemsapproach.org/congestion/tcpcc.html

4. https://www.vagrantup.com/intro/getting-started/index.html

5. https://www.virtualbox.org/

6. https://www.wireshark.org/docs/man-pages/tshark.html

7. https://linux.die.net/man/8/tcpdump

8. https://www.wireshark.org/docs/wsug_html_chunked/ChPluginFolders.html

9.

https://book.systemsapproach.org/e2e/tcp.html#connection-establishment-and-termination
https://book.systemsapproach.org/e2e/tcp.html#adaptive-retransmission
https://book.systemsapproach.org/congestion/tcpcc.html
https://www.vagrantup.com/intro/getting-started/index.html
https://www.virtualbox.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://linux.die.net/man/8/tcpdump
https://www.wireshark.org/docs/wsug_html_chunked/ChPluginFolders.html

