
15-441/641 Recitation

Project 3: Video
CDN

Generations of TAs

Introduction to
CDN
More details in Lecture 19 slides

What Are Content Delivery Networks
(CDNs)?

Source:
https://howtogetonline.com/a-guide-to-content-delivery-networks.php

How Do CDNs
Work?

Source:
https://www.technodoze.com/blogging/use-content-delivery-network.html

http://www.technodoze.com/blogging/use-content-delivery-network.html
http://www.technodoze.com/blogging/use-content-delivery-network.html

Why Use CDNs?

•Caching
• Recall stuff from 213
• CDN brings data closer to clients -> reduces propagation

delay

•Reduce Load on One (or some) Servers
• Central server hardware can be simplified

•Protects Against DDoS Attacks
• Multiple points of failure

Actual CDN vs. Your
CDN

You Need to Implement

1. HTTP proxy with adaptive video bitrate selection
• Intercept HTTP requests and modify them to request the bitrate

appropriate for current network conditions.

• Query the DNS server to determine which server to forward the request to.

2. DNS server with load balancing
• Implements a subset of the DNS protocol.

Bitrate Adaptive
Proxy

Proxy: TODO

1. Concurrent HTTP proxy basics from Project 1/Starter code
2. Calculate Throughput

• T_curr = Size_of_chunk/(time_end – time_start)

• T_avg ← α(T_curr) + (1- α)T_avg

3. Choose the bitrate of the chunk based on T_avg
• The available bitrates can be found in the “*.f4m” file, requested at the beginning of

the stream by the video player
• NOTE: You won’t send this file to the browser, instead you’ll send a dummy file

4. Modify the request URL accordingly
• /path/to/video/<bitrate>Seq<snum>-Frag<fnum>

5. Query the DNS server for the server IP using the interface in mydns.h
[checkpoint 2]

6. Make the request

Running Your Proxy

proxy <log> <alpha> <listen-port> <fake-ip> <dns-ip> <dns-port> [<www-ip>]

• Log: Path to the log file [IMPORTANT: The grader relies on it]

• Alpha: A float in range [0,1]

• Fake-ip: You will bind to this IP address when you connect to the web-server

• Dns-ip: IP address of the DNS server

• Dns-port: UDP port on which the DNS server is listening

• www-ip: [OPTIONAL] The IP of the webserver. If not specified, the proxy should query the DNS
server for the IP.

DNS with Load
Balancing

DNS: TODO

1. Familiarize yourself with the format of a DNS message.
• Refer to RFC 1035 and the writeup

2. Write constructors and parsers for DNS messages
3. Listen on a UDP socket for incoming DNS query

packets

4. Implement round-robin load balancing

• Just return the next server in the list

5. Implement shortest-path load balancing (next slide)

6. Implement Dijkstra’s shortest path algorithm

7. For each client determine the closest server using LSAs

6. Implement the interface in mydns.h

Shortest Path Load Balancing

1. Read LSAs from the specified file
• Format: <sender> <sequence number> <neighbors>

• Sender: IP address of the sender

• Neighbors: comma-separated IP addresses of neighbors

2. Only consider the messages with the largest sequence number

3. Build a graph and run Dijkstra’s algorithm

Running Your DNS Server

• nameserver [-r] <log> <ip> <port> <servers> <LSAs>
• -r [OPTIONAL] Uses round robin load balancing
• Log: log file [IMPORTANT: The grader relies on it]
• Servers: file containing the IP addresses of the
servers

• LSAs: A file containing the LSAs, one per line

Implementing mydns.h

/**

* Initialize your client DNS library with the IP address and port
number

* of your DNS server.
* @param dns_ip The IP address of the DNS server.
* @param dns_port The port number of the DNS server.
* @return 0 on success, -1 otherwise
*/

int init_mydns(const char *dns_ip, unsigned int dns_port){

// Probably just initialize some internal data structures

}

/**

* Resolve a DNS name using your custom DNS server.
* Whenever your proxy needs to open a connection to a web server, it
* calls resolve() as follows:*

*
*
*

struct addrinfo *result;

int rc = resolve("video.cs.cmu.edu", "8080", null, &result); if (rc != 0) {//
handle error }
// connect to address in result* free(result);

* @param node The hostname to resolve.

* @param service The desired port number as a string.
* @param hints Should be null. resolve() ignores this parameter.
* @param res The result. resolve() should allocate a struct addrinfo,

* which the caller is responsible for freeing. * @return 0 on success, -1

otherwise

*/

int resolve(const char *node, const char *service, const struct addrinfo
*hints, struct addrinfo **res){

// Send the actual DNS request over UDP

}

Developing and
Testing

Development Environment

•You will work on a preconfigured virtual machine

• The virtual machine disk image can be downloaded from the assignments
page as a “.vmdk” file

•You will have to setup a virtual machine with 64-bit Fedora as the
operating system and import the disk image.
• You may use any virtualization software for this but we recommend

Oracle VirtualBox (it’s FREE!!)

•You will work on the “Project 3” account which has admin rights

• Username: proj3

• Password: project3

•You will find the starter code in the home directory

Network Simulation

•You will simulate the whole network, including proxies, routers and,
web and DNS servers, on the virtual machine.

•You will use netsim.py for:
• Simulating network topologies

./netsim.py <topology-dir> start/stop

• Simulating events on the network
./netsim.py <topology-dir> run –r <events-file>

•A few topologies are included, but you are encouraged to make

your own as well.

Topology Directory Structure

• topos/

• <topology-name>/
• <topology-name>.clients

• List of IP addresses for the clients (proxies)

• <topology-name>.servers
• List of video servers

• <topology-name>.dns
• A single IP address for the DNS server

• <topology-name>.links
• A list of space-separated node pairs, e.g. 1.0.0.1 router1

• <topology-name>.bottlenecks
• List of links that you want to run events on

• <ip1> link<num> <ip2>

• *.events
• <time> <link> <bandwidth> <latency>

• *.lsa

Open the files and read the comments for more details

