
15-441/641: Computer Networks
The Internet Model & Layering

15-441 Spring 2019
Profs Peter Steenkiste & Justine Sherry

I have this problem
• I’m very bad at estimating time for lectures.

• Maybe if I had been teaching this class since 1987 I’d know better

• I definitely though I was going to complete all that routing stuff last
Thursday.

• Instead we finished it today (1/21).

• Here’s what I’d originally planned to discuss today — let’s see how
far we make today :-)

What you know so far
• A network consists of nodes and links.

• Networks can be implemented using many mediums: fiber/light, copper/electricity,
air/radio waves, string/knots…

• Data is transmitted in fixed-sized chunks called packets.

• Packet headers (like Ethernet headers) “wrap” these packets with useful
information, like the source and destination for the packet.

• You can calculate how long it takes for a packet to arrive at its destination using
transmission delay and propagation delay.

• You know how a collection of nodes in a network routes a packet to its destination.

This all seems so basic!

• How could we possibly build a web service that scales the globe
using such simple primitives?

Network Architecture

Network architecture is the design of a computer network. It is a
framework for the specification of a network's physical components
and their functional organization and configuration, its operational
principles and procedures, as well as communication
protocols used.

[Wikipedia]

Architectures
• The architecture of your house specifies its structure, from nails and

boards up, through descriptions like “walls”, up to big ideas like “dining
room”. It describes how all of these components fit together to make up
your house.

• The architecture of your computer specifies its structure, starting from
how transistors are connected, to create memory and circuits, all the
way up to an ISA, BIOS and starting up an “operating system”.

• The architecture of the Internet similarly specifies how we go from
electrons, light, flags or radio signals up to things like “Netflix streaming
video service” or “Google search.”

The Internet Model
Application

Transport

Network

Data Link

Physical

This video for no good reason…

… and the Internet has layers
too!

Understanding the Layers of the Internet Model

Application

Transport

Network

Data Link

Physical

Bottom Up:
Think of the

layers like APIs

Top Down:
Encapsulation

Model

Understanding the Layers of the Internet Model

Application

Transport

Network

Data Link

Physical

Bottom Up:
Think of the

layers like APIs

PHY: The Physical Layer (Layer 0)

• “The physical layer defines the means of transmitting raw bits...
The bitstream may be grouped into code words or symbols and
converted to a physical signal that is transmitted over a transmission
medium." [Wikipedia]

• Takes as input: electricity, light, radio waves… any physical medium

• Provides an API to the “next up” layer that provides 1’s and 0’s

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Transmission_medium
https://en.wikipedia.org/wiki/Transmission_medium

PHY: The Physical Layer (Layer 1)

Physical Layer

01010101001000000100111111010101
Anyone *using* the PHY

layer can just think about 1’s and 0’s
— they don’t have to worry about

how the data is transmitted.

Systems Engineering Wisdom

“Modularity based on abstraction
is the way things get done.”

Barbara Liskov
Turing Award Winner
+ von Neumann Medal, Computer Pioneer Award,…
+ Pretty much all the things.

LNK: The Data Link Layer (Layer 2)

Physical Layer

01010101001000000100111111010101

LNK: The Data Link Layer (Layer 2)

Physical Layer

01010101001000000100111111010101

Data Link

Packets

There’s a lot going on inside LNK
• Ethernet is an example of a data link-layer protocol. Things you already

know:
• Turns those 1’s and 0’s into packets.
• Labels senders and receivers.

• Other things the link layer does — we’ll talk more about this later in the
semester.
• Allows everyone to talk to everyone else! It’s like we’re all on the same link.
• Prevents multiple senders from transmitting at the same time

• Think about wireless: if two transmitters transmit at the same time, they
interfere with each other and the signal doesn’t get through.

• Detects and prevents errors in packets — what if the bits are corrupted?
• Solar flares, power surge, someone turned on a microwave…

There are a lot of link-layer protocols too
• The stuff you see in practice will almost always be very similar to the

version of Ethernet we learn in class.

FDDI Token Ring
PPP

L2CAP

Once again,
important thing is that the
layer above just sees nice,

uncorrupted packets! Doesn’t
have to care how this is

achieved.

LNK: The Data Link Layer (Layer 2)

Physical Layer

01010101001000000100111111010101

Data Link

Packets

NET: The Network Layer (Layer 3)

Physical Layer

01010101001000000100111111010101

Data Link

Packets

Network / INTERNET

The network layer is funny
• The structure of the data changes very little

• You still get packets.

• They just have different headers than they did at the Link Layer

• There aren’t multiple network layers.

• There’s only one.

• The Internet Protocol

NET: The Network Layer (Layer 3)

Physical Layer

01010101001000000100111111010101

Data Link

Packets

Network / INTERNET

More Packets?

NET vs LNK

• Both provide packet delivery

• You know what packets are

• They’re not packages

• So what is the difference between them?

History Time

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

1 Mbps

Network 2
Token Ring Network

16 bit addresses
17,000 byte frames

4 Mbps

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

100 Kbps

How do we connect these very different networks?

Answer: The Internet Protocol
• You frame your packets however you like.

• Your addresses, your packet sizes, your headers…

• Inside of your packets, we will stick another header!

• This new header will contain global addresses: IP Addresses

• We’ll divide the world into switches and routers

• Switches will route on your, Link Layer (L2) Addresses

• Routers will operate on IP (L3) Addresses

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

1 Mbps

Network 2
Token Ring Network

16 bit addresses
17,000 byte frames

4 Mbps

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

100 Kbps

IP HEADER PAYLOADL2 HEADER

IP Router IP Router

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

1 Mbps

Network 2
Token Ring Network

16 bit addresses
17,000 byte frames

4 Mbps

Network 1
Ethernet Network
48-bit Addresses
1500 byte frames

100 Kbps

IP HEADER PAYLOADL2 HEADER

IP Router IP Router

Switches look at the Layer-2 Header and
route according to the Layer-2 Address

(e.g, MAC addresses)

Routers strip off the Layer-2 Header and
look at the Layer 3 Header. They route

using Layer 3 (i.e. IP) addresses.

The Narrow Waist
• This design means that everyone

has to agree to use IP.

• All of the network have to use it
in the same way.

• So there can be lots of L2
designs… but there is only one L3
design.

• This is why IP is often called “The
Narrow Waist” of the Internet.

Many PHY

The Narrow Waist
• This design means that everyone

has to agree to use IP.

• All of the network have to use it
in the same way.

• So there can be lots of L2
designs… but there is only one L3
design.

• This is why IP is often called “The
Narrow Waist” of the Internet.

Many LNK

The Narrow Waist
• This design means that everyone

has to agree to use IP.

• All of the network have to use it
in the same way.

• So there can be lots of L2
designs… but there is only one L3
design.

• This is why IP is often called “The
Narrow Waist” of the Internet.

Only one IP

Coping with other differences between networks
• Some networks are higher speed than others. IP will just drop packets if a

fast network sends packets too quickly into a slow one.

• Some networks guarantee no loss. IP doesn’t even try — since some
networks can’t guarantee loss-free, in order delivery, the Internet doesn’t try
to guarantee loss-free, in order delivery.

• This is called best effort service.

• Some networks have bigger packets than others.

• IP supports “fragmentation” — splitting one packet into many smaller
ones — to make up for this.

Professor Steenkiste will tell you
lots more about IP shortly!

NET: The Network Layer (Layer 3)

Physical Layer
01010101001000000100111111010101

Data Link

Packets
Network / INTERNET

Globally Routable Packets

 The Transport Layer (Layer 4)

Physical Layer
01010101001000000100111111010101

Data Link

Packets
Network / INTERNET

Globally Routable Packets

Transport

The Need for the Transport Layer
• The IP layer doesn’t give any guarantees!

• Packets can arrive out of order.

• They can get lost.

• The transport layer makes up for this. The transport layer is implemented in code
running at the end hosts.

• It can establish a connection between two endpoints.

• It can re-transmit data that is lost.

• It can put packets back together in the right order.

But it doesn’t have to!

Choose your own Transport

TCP:
Reliable
In-Order

“Byte Stream”

UDP:
No guarantees

Why would we want both of these?

 The Transport Layer (Layer 4)

Physical Layer
01010101001000000100111111010101

Data Link

Packets
Network / INTERNET

Globally Routable Packets

Transport

Connection
You’re pretty familiar with sockets and

getting data across the network in-order —
so I’ll leave transport be for now.

 The Application Layer (Layer 7)

Physical Layer
01010101001000000100111111010101

Data Link

Packets
Network / INTERNET

Globally Routable Packets

Transport

Connection

Application

How
 di

d w
e g

et
to

7?

1983: The
OSI Model

• Imagining the future of
networking, the
International
Telecommunications
Union (ITU) proposed the
OSI model.

• It had 7 layers.

Application

Transport

Network

Data Link

Physical

Session

Presentation

1983: The
OSI Model

• … the Session and
Presentation layers didn’t
really work out in
practice.

• We don’t really talk about
them anymore.

• Byeeeeeeeee

Application

Transport

Network

Data Link

Physical

Session

Presentation

Back to Layer 7

Physical Layer
01010101001000000100111111010101

Data Link

Packets
Network / INTERNET

Globally Routable Packets

Transport

Connection

Application

It’s your application!
HTTP

LISO WEB SERVER

Understanding the Layers of the Internet Model

Application

Transport

Network

Data Link

Physical

Top Down:
Encapsulation

Model

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Application sends a chunk of data (bytestream) down to transport layer.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Transport layer chops the data into pieces, adds a connection ID & header.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Transport layer hands down to IP layer where packet gets an IP address.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Packet goes down to link layer where packet gets, eg. an Ethernet header.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Packet goes down to link layer where packet gets, eg. an Ethernet header.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Strip off link layer header.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Strip off IP header.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Strip off transport header, potentially put packets back in order.

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Understanding the Layers of the Internet Model
Application finally reads the data that was sent.

So what goes in what layer?

J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-
to-end arguments in system design. ACM Trans.

Comput. Syst. 2, 4 (November 1984), 277-288.

We were still trying to understand this “layering” business. What are the
layers. And what do we do with them?

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

What if Zeeshan later reads the file
and find it is corrupted? What could

have gone wrong?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

How do we re-design our system to
make sure the file doesn’t get

corrupted?

B

Network

Program

File System

B

Network

Program

File System

B

Network

Program

File System

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

[However], sometimes an incomplete version of the function
provided by the communication system may be useful as a

performance enhancement.

Let’s say we had a perfectly reliable network

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Well, that wasn’t very helpful…

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

Read file and its checksum from disk.
Verify file + checksum.

Send File AND Checksum.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

Write file and checksum to disk.
Then read back and double-check that

checksum + file verify.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

If Checksum doesn’t match?
Just ask Justine to re-send.

(ie, try all over again!)

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Lesson: If you can do it at the
“higher” layer, don’t bother

implementing it at a lower layer.

Don’t
waste your

time!

Avoid
causing

confusion.

Other places to apply E2E in Networks

• Encryption

• First-in-first-out ordering

• Duplicate message surpression

• Multi-message transactions

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

[However], sometimes an incomplete version of the function
provided by the communication system may be useful as a

performance enhancement.

One
Exception!

A B

Network

Program

File System

Program

File System

What if 90% of my loss really was happening at the network layer?

Network

As a performance
optimization, you might
want to implement it in
the lower layer anyway

(redundantly).

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

Anyone have any other
examples where this plays out?

The “Strong” End-to-End
Argument

It’s not just a waste of time to put
non-essential functionality at lower

layers: it’s actually harmful.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

Slightly less bandwidth
More latency

Some applications may be
constrained by the new functionality.

Firewalls and Intrusion Detection
Good server

Evil Server

Firewalls and Intrusion Detection
I need to protect my

users!

Web traffic, email

IRC, strange port numbers

Firewalls and Intrusion Detection
I need to protect my

users!

Only allow web
and email!

Firewalls and Intrusion Detection
I need to protect my

users!

But what if I
have a cool
new app?

End to End Argument: Recap
• Basic argument: If you can implement functionality correctly and

completely at endpoints, do it there and not at a lower layer.

• It saves on redundant work in the system, and avoids confusion
later. Exceptions okay for performance optimizations.

• Strong argument: Avoid putting unneeded functionality at lower
layers of your system altogether because it’s harmful!

• Extra functionality at low layers constrains how applications are
designed at higher layers.

Now you know
• The 5 layers define the architecture of the Internet today.

• You already know about two of them!

• Starting today we’ll dig into the Network Layer with Prof Steenkiste.
Next week we’ll move into transport. And then — since you’ve built
your Liso Server at the Application Layer — you’ll know how the
Internet works :-)

• In general, we try to push as much functionality as we can into higher
layers, rather than lower ones, because of the End to End Argument.

