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Questions to discuss with a friend
• What are some things that make reliable transmission hard? 

• Think: what went wrong in our reliable transmission race? 

• What is the difference between a “cumulative ACK” and a “basic ACK”? 

• What is one benefit of each? 

• How do Selective Repeat and Go-back-N improve upon Stop-and-Wait? 

• Can the transport layer guarantee: 

• That all packets will arrive at their destination? 

• That packets will be delivered at a certain throughput? 

• That packets will be delivered with a certain latency?



Last Time: Reliable Transmission
• When transmitting across the Internet, how can we be sure that every 

message reaches its destination? 

• Retransmit! 

• Three approaches: 

• Stop and Wait 

• Go Back N 

• Selective Repeat



Stop-and-Wait: Summary
• Sender:

• Transmit packets one by one. Label each with a sequence number. Set timer 
after transmitting. 

• If receive ACK, send the next packet. 

• If timer goes off, re-send the previous packet. 

• Receiver:

• When receive packet, send ACK. 

• If packet is corrupted, just ignore it — sender will eventually re-send.



Can I get some volunteers to act it out?



Selective Repeat
• Sender: 

• Send packets from the window. Set timeout for each packet. 

• On receiving ACKs for the “left side” of the window, slide forward. 

• Send packets that have now entered the window. 

• On timeout, retransmit only the timed out packet 

• Receiver

• Keep a buffer of size of the window.  

• On receiving packets, send ACKs for every packet. 

• If packets come in out of order, just store them in the buffer and send ACK anyway.



Can I get some volunteers to act it out?



Today’s Agenda

• #1: How big should we size the window? 

• #2: How should we determine the BDP? 

• #3: How does “plain” TCP work?



Today’s Agenda

• #1: How big should we size the window?

• #2: How should we determine the BDP? 

• #3: How does “plain” TCP work?



Sliding Windows
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



Last Time
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



Today
• A sender’s “window” contains a set of packets that have been 

transmitted but not yet acked. 

• Sliding windows improve the efficiency of a transport protocol. 

• Two questions we need to answer to use windows: 

• (1) How do we handle loss with a windowed approach? 

• (2) How big should we make the window?



Why not send as fast as we 
can?



Problem #1: Flow Control



Yet another demo… 
I need two volunteers, one of whom is 
confident reading out loud in English!



Flow Control: Don’t overload the 
receiver.



Bonus candy: who wrote the essay 
in the packets? What is the essay 

named?
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11 and 12 just get dropped :(



Solution: Advertised Window

● Receiver uses an “Advertised Window” (W) to prevent sender from 
overflowing its window 

● Receiver indicates value of W in ACKs 

● Sender limits number of bytes it can have in flight <= W 

● If I only have 10KB left in my buffer, tell the receiver in my next ACK!



How big should we make the window?

• Window should be: 

• Less than or equal to the advertised window so that we do not 
overload the receiver. 

• This is called Flow Control. 



Alright, so let’s set the window to 
W?



What will happen here?

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms



What will happen here?

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms

Packets will get dropped here



What will happen here?

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms

Arrival rate is faster than departure rate



How big should we set the 
window to be?



“I just want to send at 50Mbps — how does that 
translate into a window size?”

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms



Remind me: what is the 
definition of a Window?



Recall: Window is the number of 
bytes I may have transmitted but not 

yet received an ACK for.



How long will it take for me to receive an ACK back 
for the first packet?

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms



How long will it take for me to receive an ACK back 
for the first packet?

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms

One round-trip-time (RTT) = 200 milliseconds



How much data will I send, at 
50Mbps, in 200ms?



50Mbps * 200ms = 1.25 MB 
We call this the  

bandwidth-delay product.



Pipe Model
bandwidth

Latency

delay x bandwidth

● Bandwidth-Delay Product (BDP): “volume” of the link  

● amount of data that can be “in flight” at any time 

● propagation delay × bits/time = total bits in link



When we set our window to the BDP, we get into a 
very convenient loop called “ACK Clocking”

Receiver 
Advertised Window = 1 gazillion bytesSender

100Mbps 
25ms

50Mbps 
75ms

One round-trip-time (RTT) = 200 milliseconds



Yes, yet another demo….

Receiver 
Advertised Window = 1 gazillion bytesSender

1 packet/sec 
1 sec

1 packet/sec 
1 sec



I receive new ACKs back at *just* the right rate so 
that I can keep transmitting at 1 packet/sec.

Receiver 
Advertised Window = 1 gazillion bytesSender

1 packet/sec 
1 sec

1 packet/sec 
1 sec



How big should we make the window?
• Window should be: 

• Less than or equal to the advertised window so that we do not overload 
the receiver. 

• This is called Flow Control. 

• Less than or equal to the bandwidth-delay product so that we do not 
overload the network. 

• This is called Congestion Control. 

• (That’s it).



What are we missing?



How do we actually figure out 
the BDP?!?!



Today’s Agenda

• #1: How big should we size the window? 

• #2: How should we determine the BDP?

• #3: How does “plain” TCP work?



Problem Constraints

• The network does not tell us the bandwidth or the round trip time. 

• Implication: Need to infer appropriate window size from the 
transmitted packets.



Let’s make it harder…



Problem Constraints

• The network does not tell us the bandwidth or the round trip time. 

• My share of bandwidth is dependent on the other users on the 
network.



Me

100Mbps 
10 ms

100Mbps 
10 ms

Receiver

My window size: 100Mbps x 10ms
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Me 100Mbps 
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I only get half



Me 100Mbps 
10 ms

100Mbps 
10 ms

Receiver

My window size: 33Mbps x 10ms

Mr. Prez
100Mbps 

10 ms

I only get 1/3

Bob



Problem Constraints

• The network does not tell us the bandwidth or the round trip time. 

• My share of bandwidth is dependent on the other users on the 
network. 

• Implication: my window size will change as other users start or 
stop sending.



Problem Constraints

• The network does not tell us the bandwidth or the round trip time. 

• My share of bandwidth is dependent on the other users on the 
network. 

• Excess packets may not be dropped, but instead stalled in a 
bottleneck queue. 



All routers have queues to avoid packet drops.



No Overload!

All routers have queues to avoid packet drops.



Statistical multiplexing: pipe view

Queue

Transient Overload
Not a rare event!
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All routers have queues to avoid packet drops.



Transient Overload
Not a rare event!

Queue

All routers have queues to avoid packet drops.



Queue

Transient Overload
Not a rare event!Queues absorb transient bursts!

All routers have queues to avoid packet drops.



BDP: 100Mbps * 200ms = 2.5MB

Receiver 
Advertised Window = 1 gazillion bytesSender

200Mbps 
30ms

100Mbps 
70ms



BDP: 100Mbps * 200ms = 2.5MB

Receiver 
Advertised Window = 1 gazillion bytesSender

200Mbps 
30ms

100Mbps 
70ms

If I have 1000B payloads, my window will be 2500 packets.



BDP: 100Mbps * 200ms = 2.5MB

Receiver 
Advertised Window = 1 gazillion bytesSender

200Mbps 
30ms

100Mbps 
70ms

Will packets get dropped if I set my window to, say, 2.6MB or 
2600 packets?



What do you think?



BDP: 100Mbps * 200ms = 2.5MB

Sender

200Mbps 
30ms

100Mbps 
70ms

If the queue can hold 100 more packets, none will be dropped!

Queue



BDP: 100Mbps * 200ms = 2.5MB

Sender

200Mbps 
30ms

100Mbps 
70ms

If the queue cannot “absorb” the extra packets, they will be 
dropped.

Queue



Problem Constraints
• The network does not tell us the bandwidth or the round trip time. 

• My share of bandwidth is dependent on the other users on the 
network. 

• Excess packets may not be dropped, but instead stalled in a 
bottleneck queue.  

• Implication: It’s okay to “overshoot” the window size, a little bit, 
and you still won’t suffer packet loss.



Congestion Control Algorithm: An 
algorithm to determine the appropriate 

window size, given the prior constraints.



There are many congestion control algorithms.
• TCP Reno and NewReno (the OG originals) 

• Cubic (Linux, OSX) 

• BBR (Google) 

• LEDBAT (BitTorrent) 

• Compound (Windows) 

• FastTCP (Akamai) 

• DCTCP (Microsoft Datacenters) 

• TIMELY (Google Datacenters) 

• Other weird stuff (ask Ranysha on Thursday)



Some History: TCP in the 1980s
• Sending rate only limited by flow control 

• Packet drops ! senders (repeatedly!) retransmit a full window’s worth 
of packets  

• Led to “congestion collapse” starting Oct. 1986 
• Throughput on the NSF network dropped from 32Kbits/s to 40bits/sec 

• “Fixed” by Van Jacobson’s development of TCP’s congestion control 
(CC) algorithms



Van Jacobsen

• Inventor of TCP Congestion Control 
• “TCP Tahoe” 
• More recently, one of the co-inventors 

of Google’s BBR 
• Author of many networking tools 

(traceroute, tcpdump)

Internet Hall of Fame 
Kobayashi Award 

SIGCOMM Lifetime Achievement Award

LITERALLY SAVED THE INTERNET 
 FROM COLLAPSE



Jacobson’s Approach
• Extend TCP’s existing window-based protocol but adapt the window size 

in response to congestion 
• required no upgrades to routers or applications! 
• patch of a few lines of code to TCP implementations 

• A pragmatic and effective solution  
• but many other approaches exist 

• Extensively improved upon 
• topic now sees less activity in ISP contexts  
• but is making a comeback in datacenter environments



The default TCP everyone teaches is 
TCP Reno, so that is what we will 

teach in this class.
* Even though Reno isn’t what Jacobsen invented.

** Even though our research at CMU suggests that it’s extinct — no one 
uses it anymore

*** On Thursday you’ll learn about “living” TCPs



TCP Reno: General Blueprint

• If a packet is lost, slow down! The packet is a signal that you are 
sending too fast. 

• If you have been sending for a while and no packets are lost, speed 
up! No loss is a signal that you are probably are sending less than 
the link capacity.



How much should we slow down? Speed up?
• AIAD: Additive Increase, Additive Decrease 

• Every RTT, I increase my window by one. Every time I have a loss, I decrease my window by 
one. 

• MIAD: Multiplicative Increase, Additive Decrease 

• Every RTT, I increase my window by 2x. Every time I have a loss, I decrease my window by one. 

• AIMD: Additive Increase, Multiplicative Decrease 

• Every RTT, I increase my window by 1. Every time I have a loss, I decrease my window by 2x. 

• MIMD: Additive Increase, Multiplicative Decrease 

• Every RTT, I increase my window by 2x. Every time I have a loss, I decrease my window by 2x.



Let’s Try It
• Turn to a partner. One of you will be “the network”, the other will be 

“the sender.”

• Network: 

• Choose a random number between 1 and 30. This is 
your BDP. 

• Every time your partner guesses, tell them “drop” if 
they overshoot, or “no drop” if they undershoot. 

• On a piece of paper, keep track of how many times 
your partner guessed, and keep track of how many 
packets are “lost” 

• If my partner guesses 40, and my secret number 
is 28, we “lost” 12 packets and transmitted 28.

• Sender: 

• Choose an algorithm (AIMD, MIMD, MIAD, or 
AIAD) and an initial window size — a random 
number from 1-30 that is your first window size. 

• Tell your partner “I transmit $windowsize packets” 

• Your partner will tell you whether there were 
dropped packets or no dropped packets. 

• Adjust your window according to the algorithm 
and then make another guess.



Who thinks they had a good algorithm/initial 
window size?

• What algorithm did you choose?  

• Why is it a good algorithm? 

• What initial window size did you choose? 

• Why is it a good initial window size?



Challenges
• If you overshoot, lots of packets can be lost — for you and anyone 

else sharing the link! 

• Wastes network resources 

• Slows down transmission overall (have to wait for timers to go off) 

• Wastes CPU time (complicates book-keeping at sender and 
receiver) 

• If you undershoot your transmission is slower than it could be…. :(



TCP Reno
• Uses Multiplicative Increase at startup to find the “right” sending 

rate quickly. Initial window size is set to 4.  

• For historical reasons this is called “slow start” — senders used to 
just pick an insane high initial window size and this was “slower” 
than that. 

• Under normal operation, uses Additive Increase/Multiplicative 
Decrease (AIMD) to adjust the sending rate over time.



Leads to the TCP “Sawtooth”

Loss

Exponential  
“slow start”

t

Window



Slow-Start vs. AIMD
• When does a sender stop Slow-Start and start Additive Increase? 

• Introduce a “slow start threshold” (ssthresh) 
• Initialized to a large value 

• When window = ssthresh, sender switches from slow-start to AIMD-
style increase 

• Or if a drop happens.



Why AIMD?
• Key idea: 

• Be cautious in consuming new resources 

• So we don’t cause another congestion collapse! 

• Be aggressive in slowing down at packet drops. 

• So we don’t cause another congestion collapse! 

• Other nice properties: AIMD is guaranteed to converge to a fair share between two 
senders sharing the same link with the same RTT. 

• More on this on Thursday.



Today’s Agenda

• #1: How big should we size the window? 

• #2: How should we determine the BDP? 

• #3: How does “plain” TCP work?



Today’s Agenda

• #1: How big should we size the window? 

• #2: How should we determine the BDP? 

• #3: How does “plain” TCP Reno work?



TCP Header
Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux  
and demux 



TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B

B
yte 80

B
yte 80



… Provided Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when: 
1. Segment full (Max Segment Size), 
2. Not full, but times out



TCP Segment
• IP packet 

• No bigger than Maximum Transmission Unit (MTU) 
• E.g., up to 1500 bytes with Ethernet 

• TCP packet 
• IP packet with a TCP header and data inside 

• TCP header ≥ 20 bytes long 

• TCP segment 
• No more than Maximum Segment Size (MSS) bytes 
• E.g., up to 1460 consecutive bytes from the stream 
• MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)



Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number   
= 1st byte in segment 

= ISN + k

k bytes



Sequence Numbers

Host B

TCP Data

TCP Data

TCP  
HDR

TCP  
HDR

ACK sequence number  
= next expected byte 

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number   
= 1st byte in segment 

= ISN + k

k



TCP Header
Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data 
carried in this 
segment



TCP Header
Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order 
(“What Byte  
    is Next”) 

Remember: 
CUMULATIVE — 
this means I have 
every byte before 
this sequence 
number 



TCP Connection Establishment and Initial 
Sequence Numbers



Initial Sequence Number (ISN)
• Sequence number for the very first byte 
• Why not just use ISN = 0? 
• Practical issue 

• IP addresses and port #s uniquely identify a connection 
• Eventually, though, these port #s do get used again 
• … small chance an old packet is still in flight 

• TCP therefore requires changing ISN 
• Hosts exchange ISNs when they establish a connection



Establishing a TCP Connection

• Three-way handshake to establish connection 
• Host A sends a SYN (open; “synchronize sequence numbers”) to host B 
• Host B returns a SYN acknowledgment (SYN ACK) 
• Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.



TCP Header
Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG



Step 1: A’s Initial SYN Packet
A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

A tells B it wants to open a connection…



Step 2: B’s SYN-ACK Packet
B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

B tells A it accepts, and is ready to hear the next byte…
… upon receiving this packet, A can start sending data

Flags



Step 3: A’s ACK of the SYN-ACK
A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data



Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active  
Open

Passive 
Open

connect()
listen()



What if the SYN Packet Gets Lost?
• Suppose the SYN packet gets lost 

• Packet is lost inside the network, or: 
• Server discards the packet (e.g., it’s too busy) 

• Eventually, no SYN-ACK arrives 
• Sender sets a timer and waits for the SYN-ACK 
• … and retransmits the SYN if needed 

• How should the TCP sender set the timer? 
• Sender has no idea how far away the receiver is 
• Hard to guess a reasonable length of time to wait 
• SHOULD (RFCs 1122 & 2988) use default of 3 seconds 

• Some implementations instead use 6 seconds



SYN Loss and Web Downloads
• User clicks on a hypertext link 

• Browser creates a socket and does a “connect” 
• The “connect” triggers the OS to transmit a SYN 

• If the SYN is lost… 
• 3-6 seconds of delay: can be very long 
• User may become impatient 
• … and click the hyperlink again, or click “reload” 

• User triggers an “abort” of the “connect” 
• Browser creates a new socket and another “connect” 
• Essentially, forces a faster send of a new SYN packet! 
• Sometimes very effective, and the page comes quickly



Tearing Down the Connection



Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes 
• FIN occupies one byte in the sequence space 

• Other host acks the byte to confirm 
• Closes A’s side of the connection, but not B’s 

• Until B likewise sends a FIN 
• Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

TIME_WAIT: 

Avoid reincarnation 

B will retransmit FIN  
if ACK is lost

Connection 
now half-closed

Connection 
now closed



Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection 
now closed

TIME_WAIT: 

Avoid reincarnation 
Can retransmit 
FIN ACK if ACK lost



Abrupt Termination

• A sends a RESET (RST) to B 
• E.g., because application process on A crashed 

• That’s it 
• B does not ack the RST 
• Thus, RST is not delivered reliably 
• And: any data in flight is lost 
• But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T



TCP Header
Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN 
ACK 
FIN 
RST 
PSH 
URG



TCP State Transitions

Data, ACK  
exchanges  
are in here



After all that work…

• ESTABLISHED is the part where we transmit data. 

• When our congestion control algorithm runs.



AIMD Mechanics in Reno
• “CWND” is the measured “congestion window” 

• Sending window is min(CWND, Advertised Window) 

• Reno follows three key stages to determine CWND: 

• (1) Slow start, where it uses multiplicative increase 

• (2) Congestion avoidance, where it uses additive increase 

• (3) Fast recovery, where it “recovers” from “easy” packet losses. 

• What do you mean, Easy Packet Losses?



Duplicate ACKs
• I can pre-emptively figure out that loss has happened without a timer going off. 

• How? 

• Say I receive packets with MSS 1000, sequence numbers 1000, 2000, 4000, 
5000, 6000…. 

• I know I missed 3000! 

• Recall that TCP uses cumulative ACKs — I ACK the next byte such that I have 
the data for all bytes lower than that. 

• If I see the same “dup” ACK three times, I determine there is a loss.



Leads to the TCP “Sawtooth”

Dup ACK Loss

t

Window



Assumption: Timeout Losses are Worse

• Timeout can mean (but not always) that lots of packets were lost and 
I have severely overshot. 

• So I should react more severely to a timeout. 

• Instead of halving my window, I will go all the way back to slow start 
and start over again!



Dup ACK Loss

t

Window
Timeout loss



Print this out and tape it above your bed. 
This is what you will implement for P2!

slow  
start

congstn.  
avoid.

fast  
recovery

cwnd > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout new  
ACK



Summary
• All TCP connections use the same handshake, initial sequence 

number exchange, etc. 

• But determining the right window size is hard because the network 
does not tell us directly how much capacity is available to us!  

• There are lots of algorithms to measure “CWND” 

• Reno is the classic algorithm, and it uses AIMD.



Thursday
• Why AIMD converges to fairness 

• Calculating TCP throughput with loss 

• Problems with TCP Reno 

• New TCPs: Cubic, BBR 

• Is the Internet fair?


