15-441/641: Computer Networks
The Transport [aver, Part 2 of 3

15-441 Spring 2019
Profs Peter Steenkiste & Justine Sherry

Carnegie
Mellon
University

Questions to discuss with a friend

* What are some things that make reliable transmission hard?
e Think: what went wrong in our reliable transmission race?
 What is the difference between a "cumulative ACK” and a “basic ACK"?
* What is one benefit of each?
 How do Selective Repeat and Go-back-N improve upon Stop-and-Wait?
» Can the transport layer guarantee:
* That all packets will arrive at their destination”
* That packets will be delivered at a certain throughput?

* [hat packets will be delivered with a certain latency?

| ast [ime: Reliable [ransmission

 \When transmitting across the Internet, how can we be sure that every
message reaches its destination”

e Retransmit!

* [hree approaches:
o Stop and Walit
« Go Back N

¢ Selective Repeat

Stop-and-Wait: Summary

- Sender:

* Transmit packets one by one. Label each with a sequence number. Set timer
after transmitting.

* |t receive ACK, send the next packet.

* |[f timer goes off, re-send the previous packet.
* Receiver:

* When receive packet, send ACK.

* |f packet is corrupted, just ignore it — sender will eventually re-send.

Can | get some volunteers to act it out?

Selective Repeat

- Sender:
* Send packets from the window. Set timeout for each packet.
 Onreceiving ACKs for the “left side” of the window, slide forward.
* Send packets that have now entered the window.
* On timeout, retransmit only the timed out packet
- Receiver
 Keep a buffer of size of the window.
* On receiving packets, send ACKs for every packet.

* |f packets come in out of order, just store them in the buffer and send ACK anyway.

Can | get some volunteers to act it out?

logay's Agenaa

o #1:. How big should we size the window?

e #2: How should we determine the BDP?

e #3: How does “plain” TCP work?

logay's Agenaa

- #1: How big should we size the window?

e #2: How should we determine the BDP?

e #3: How does “plain” TCP work?

Sliding Windows

A sender’s “window” contains a set of packets that have been
transmitted but not yet acked.

o Sliding windows improve the efficiency of a transport protocol.
* WO questions we need to answer to use windows:
* (1) How do we handle loss with a windowed approach?

e (2) How big should we make the window?

| ast [iIme

* (1) How do we handle loss with a windowed approach?

logay

e (2) How big should we make the window?

&

Why not send as fast as we
can’

Problem #1: Flow Control

Yet another demo...
| Nneed two volunteers, one of whom IS
confident reading out loud In English!

Flow Control: Don’t overload the
recelver.

BOoNUS candy: who wrote the essay
N the packets? What is the essay
nameda?’

Recelve Butter

Liso Server

Recelve Butter

Liso Server

Recelve Butter

L |2 Liso Server

e

Recelve Butter

Liso Server

Recelve Butter

Liso Server

Recelve Butter

Liso Server

Recelve Butter

Liso Server

11 and 12 just get dropped :(

Solution: Advertised Window

e Receiver uses an “Advertised Window” (W) to prevent sender from
overflowing its window

 Receiver indicates value ot W in ACKs
» Sender limits number of bytes it can have in flight <= W

» |t | only have 10KB left in my buffer, tell the receiver in my next ACK!

How big should we make the window"

e \Window should be;

* | ess than or equal to the advertised window so that we do not
overload the receiver.

e This is called Flow Control.

What will happen here”

Recelver
Sender Advertised Window = 1 gazillion bytes
'“ 100Mbps

25ms

What will happen here”

Recelver
Sender Advertised Window = 1 gazillion bytes

-L 100Mbps @ O

25ms

>
/Packets will get dropped here

What will happen here”

Recelver
Sender Advertised Window = 1 gazillion bytes

-L 100Mbps @ ®

25ms

\ /
— - —

Arrival rate is faster than departure rate

HOW DIg should we set the
window to be”

| Just want to send at 50Mbps — how does that
translate into a window size””

Recelver
Sender Advertised Window = 1 gazillion bytes

_—/) 100Mbps @ 5

25ms

Remind me: what IS the
definition of a Window?

Recall: Window Is the number of
pytes | may have transmitted but not
vet recelved an ACK for.

How long will it take for me to receive an ACK back
for the first packet”

Recelver
Sender Advertised Window = 1 gazillion bytes

_—/) 100Mbps @ 5

25ms

How long will it take for me to receive an ACK back
for the first packet”

Recelver
Sender Advertised Window = 1 gazillion bytes

—fj |
y =

One round-trip-time (RTT) = 200 milliseconds

How much data will | send, at
50Mbps, iIn 200ms”?

S50MDpps * 200ms = 1.25 MB
We call this the
banawidth-delay proaduct.

Plipe Model

bandwidth . delay x bandwidth

N _

Latency

o Bandwidth-Delay Product (BDP): “volume” of the link
« amount of data that can be “in tlight” at any time

« propagation delay x bits/time = total bits in link

When we set our window to the BDP, we get Iinto a
very convenient loop called "ACK Clocking”

Recelver
Sender Advertised Window = 1 gazillion bytes

—fj |
y =

One round-trip-time (RTT) = 200 milliseconds

Yes, yet another demo....

Recelver
Sender Advertised Window = 1 gazillion bytes

-Iw 1 packet/sec @ 1 packet/sec A !L

1 sec 1 sec

| receive new ACKs back at *just”® the right rate so
that | can keep transmitting at 1 packet/sec.

Recelver
Sender Advertised Window = 1 gazillion bytes

-IW 1 packet/sec @ 1 packet/sec 45 !L

1 sec 1 sec

How big should we make the window"

e \Window should be:

* [ess than or equal to the advertised window so that we do not overload
the recelver.

e This s called Flow Control.

* | ess than or equal to the bandwidth-delay product so that we do not
overload the network.

* This is called Congestion Control.

e (That's it).

What are we missing?

How do we actually figure out
the BDP?171

logay's Agenaa

o #1:. How big should we size the window?

- #2: How should we determine the BDP?

e #3: How does “plain” TCP work?

Problem Constraints

* [he network does not tell us the banawidth or the round trip time.

e Implication: Need to infer appropriate window size from the
transmitted packets.

| et's make It harder...

Problem Constraints

* [he network does not tell us the banawidth or the round trip time.

My share of bandwidth is dependent on the other users on the
network.

My window size: 100Mbps x 10ms

Recelver

> 100Mbps @ 100Mbps !L

10 ms 10 ms

&

My window size: 50Mbps x 10ms

1OOMbpS Recelver

~~"100Mbps
10 ms

My window size: 50Mbps x 10ms

1OOMbpS Recelver

100Mbps | only get half

10 ms R

&

I\/Iy window size: 33Mbps x 10ms

e Bob

_/ P

Receiver

100Mbps only get 1/3

10 ms b

P &

Problem Constraints

* [he network does not tell us the banawidth or the round trip time.

My share of bandwidth is dependent on the other users on the
network.

e Implication: my window size will change as other users start or
stop sending.

Problem Constraints

* [he network does not tell us the banawidth or the round trip time.

My share of bandwidth is dependent on the other users on the
network.

e EXcess packets may not be dropped, but instead stalled in a
pbottleneck queue.

All routers have queues to avold packet drops.

All routers have queues to avold packet drops.

B
\ No Overload!

—

p_ b B B

Statistical multiplexing: pipe view

_
|—|e Queue

Transient Overload
Not a rare event!

All routers have queues to avold packet drops.

| | - Queue

Transient Overload
Not a rare event!

All routers have queues to avold packet drops.

i
ﬁ ——Queue

Transient Overload
Not a rare event!

All routers have queues to avold packet drops.

| | - Queue

Transient Overload
Not a rare event!

All routers have queues to avold packet drops.

i
|—| ——Queue

Transient Overload
Not a rare event!

All routers have queues to avold packet drops.

|—| —— Queue

/@m

@ ; ‘ D

Queues absorb transient bursts!

BDP: 100Mbps * 200ms = 2.5MB

Recelver
Sender Advertised Window = 1 gazillion bytes

-L 200Mbps @ 100Mbps !L

30ms /0ms

BDP: 100Mbps * 200ms = 2.5MB

Recelver
Sender Advertised Window = 1 gazillion bytes

-L 200Mbps @ 100Mbps !L

30ms /0ms

It | have 1000B payloads, my window will be 2500 packets.

BDP: 100Mbps * 200ms = 2.5MB

Recelver
Sender Advertised Window = 1 gazillion bytes

-L 200Mbps @ 100Mbps !L

30ms /0ms

Will packets get dropped if | set my window to, say, 2.6MB or
2600 packets?

What do you think™

BDP: 100Mbps * 200ms = 2.5MB

Sender |!|'* Queue
L

-L 200Mbps @ 100Mbps

30ms /0ms

It the queue can hold 100 more packets, none will be dropped!

BDP: 100Mbps * 200ms = 2.5MB

Sender |!|'* Queue
L

-L 200Mbps @ 100Mbps

30ms /0ms

f the queue cannot “absorb” the extra packets, they will be
dropped.

Problem Constraints

 [he network does not tell us the bandwidth or the round trip time.

My share of bandwidth is dependent on the other users on the
network.

e EXxcess packets may not be dropped, but instead stalled in a
bottleneck queue.

e Implication: Its okay to "overshoot” the window size, a little bit,
and you still won't suffer packet loss.

Congestion Control Algorithm: An
algorithm to determine the appropriate
window size, given the prior constraints.

I'here are many congestion control algorithms.

 TCP Reno and NewReno (the OG originals)
e Cubic (Linux, OSX)

« BBR (Google)

 LEDBAT (BitTorrent)

 Compound (Windows)

e FastTCP (Akamai)

« DCTCP (Microsoft Datacenters)

* TIMELY (Google Datacenters)

e Other weird stuff (ask Ranysha on Thursday)

Some History: TCP in the 1980s

e Sending rate only limited by flow control

* Packet drops = senders (repeatedly!) retransmit a full window’s worth
of packets

* | ed to “congestion collapse” starting Oct. 1986
* Throughput on the NSF network dropped from 32Kbits/s to 40bits/sec

* "Fixed” by Van Jacobson’s development of TCP’'s congestion control
(CC) algorithms

Van Jacobsen

* [Inventor of TCP Congestion Control

e “TCP Tahoe”
* More recently, one of the co-inventors

of Google’s BBR
* Author of many networking tools

(traceroute, tcpdump)

LITERALLY SAVED THE INTERNET
FROM COLLAPSE

Internet Hall of Fame
Kobayashi Award
SIGCOMM Lifetime Achievement Award

Jacobson's Approach

 Extend TCP’s existing window-based protocol but adapt the window size
IN response to congestion
* required no upgrades to routers or applications!
* patch of a few lines of code to TCP implementations

A pragmatic and effective solution
* but many other approaches exist

* Extensively improved upon
* topic now sees less activity in ISP contexts
* pbut iIs making a comeback in datacenter environments

The detault TCP everyone teaches iIs
TCP Reno, so that i1s what we will
teach In this class.

* BEven though Reno isn't what Jacobsen invented.

** Even though our research at CMU suggests that it's extinct — no one
uses It anymore

***0On Thursday you'll learn about “living” TCPs

TCP Reno: General Blueprint

e |f a packet is lost, slow down! The packet is a signal that you are
sending too fast

e |f you have been sending for a while and no packets are lost, speed
up! No loss Is a signal that you are probably are sending less than
the link capacity.

How much should we slow down”? Speed up”

e AIAD: Additive Increase, Additive Decrease

 Every RTT, | iIncrease my window by one. Every time | have a loss, | decrease my window by
one.

« MIAD: Multiplicative Increase, Additive Decrease

 BEvery RTT, | increase my window by 2x. Every time | have a loss, | decrease my window by one.
 AIMD: Additive Increase, Multiplicative Decrease

 Every RTT, | increase my window by 1. Every time | have a loss, | decrease my window by 2X.

« MIMD: Additive Increase, Multiplicative Decrease

* bEvery RTT, | Increase my window by 2x. Every time | have a loss, | decrease my window by 2x:

| et's Iry It

e Jurn to a partner. One of you will be “the network”, the other will be
‘the sender.”

e Network: e Sender:

e Choose a random number between 1 and 30. This is Choose an algorithm (AIMD, MIMD, MIAD, or
your BDP. AlAD) and an initial window size — a random

number from 1-30 that is your first window size.
o Every time your partner guesses, tell them “drop” it

they overshoot, or “no drop™ It they undershoot o Tell your partner “I transmit $windowsize packets”

 On a piece of paper, keep track of how many times
your partner guessed, and keep track of how many
packets are “lost”

e Your partner will tell you whether there were
dropped packets or no dropped packets.

e Adjust your window according to the algorithm

o It my partner guesses 40, and my secret number
and then make another guess.

s 28, we “lost” 12 packets and transmitted 28.

Who thinks they had a good algorithm/initial
window size”

* \What algorithm did you choose”?
 Why is it a good algorithm?

e What initial window size did you choose”

 Why is it a good initial window size”

Challenges

* |f you overshoot, lots of packets can be lost — for you and anyone
else sharing the link!

e \Wastes network resources
» Slows down transmission overall (have to wait for timers to go off)

o Wastes CPU time (complicates book-keeping at sender and
receiver)

e |f you undershoot your transmission is slower than it could be.... (

TCP Reno

» Uses Multiplicative Increase at startup to find the “right” sending
rate quickly. Initial window size is set to 4.

e For historical reasons this Is called “slow start” — senders used to
just pick an insane high initial window size and this was “slower”
than that.

 Under normal operation, uses Additive Increase/Multiplicative
Decrease (AIMD) to adjust the sending rate over time.

| eads to the TCP “Sawtooth”

Window

Slow-Start vs. AIMD

 \WWhen does a sender stop Slow-Start and start Additive Increase”

e |ntroduce a “slow start threshold” (ssthresh)
* |nitialized to a large value

e \When window = ssthresh, sender switches from slow-start to AIMD-
style increase

 Orif a drop happens.

Why AIMD?

 Key idea:

* Be cautious In consuming

new resources

* S0 we don’t cause another congestion collapse!

* Be aggressive in slowing down at packet drops.

* S0 we don't cause another congestion collapse!

* Other nice properties: AIMD
senders sharing the same lin

* More on this on Thursday.

< WIith the same

IS guaranteed to co

nverge to a fair share between two

RTT.

logay's Agenaa

o #1:. How big should we size the window?

e #2: How should we determine the BDP?

- #3: How does “plain” TCP work?

logay's Agenaa

o #1:. How big should we size the window?

e #2: How should we determine the BDP?

- #3: How does “plain” TCP Reno work?

TCP Header

Used to mux — Sequence number
and demux

Acknowledgment

HdrLen | 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

TCP “Stream of Bytes” Service...

Application @ Host A

0| 0| oo T3 ow
<IS1E1E S
o|olo|o o
O = | W o0
-

we/lus/ivs/live we)

SISSE <

oo |o|o o

O = DI W o0

-

Application @ Host B

... Provided Using TCP “Segments”

Host A
ZSIL <
] | < Segment Sent When:
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out
TCP Data
HostB |||
gogy [z

TCP Segment
e |P packet TCP [I>:taD (as:ment) TCP Hdr

* No bigger than Maximum Transmission Unit (MTU)
* E.g., up to 1500 bytes with Ethernet

o TCP packet
* |P packet with a TCP header and data inside

« TCP header = 20 bytes long

« TCP segment
* No more than Maximum Segment Size (MSS) bytes

* E.g., up to 1460 consecutive bytes from the stream
* MSS = MTU — (IP header) — (TCP header)

Sequence Numbers

ISN (initial sequence number)
k bytes

Sequence number
= 1st byte In segment
= ISN + k

Sequence Numbers

ISN (initial sequence number)

k
Host A
Sequence number TAD 1 Tcp
= 1st byte in segment TCP Data | o
=~ ISN + k ACK sequence number
= next expected byte

= segno + length(data)

TCP

Host B

TCP Header

Starting byte Source port Destination port
offset of data
segment Acknowledgment

HdrLen | 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

TCP Header

Acknowledgment
gives seqgno just

beyond highest Sequence number

seqno received in
order — Acknowledgment
(“What Byte

Source port Destination port

is Next”) HdrLen | 0 | Flags | Advertised window
Remember- Checksum Urgent pointer
CUMULATIVE — Options (variable)

this means | have
every byte before
this sequence

number

TCP Connection Establishment and Initial
Sequence Numbers

Initial Sequence Number (ISN)

* Seguence number for the very first byte
 \Why not just use ISN = 07

* Practical issue
* |P addresses and port #s uniquely identity a connection
* Eventually, though, these port #s do get used again
* ... small chance an old packet is still in flight

 [CP theretore requires changing ISN
 Hosts exchange ISNs when they establish a connection

Establishing a TCP Connection
U

K Each host tells

QYN AC
e its ISN to the
W} other host.

Dy,

Data

* [hree-way handshake to establish connection
« Host A sends a SYN (open; “synchronize sequence numbers”) to host B

* Host B returns a SYN acknowledgment (SYN ACK)
* Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port Destination port

Sequence number

Flags: gyN
ACK Acknowledgment
HdrLen 0~ Flags Advertised window
Checksum Urgent pointer

Options (variable)

Step 1: A’s Initial SYN Packet

A's port B's port
A's Initial Sequence Number
Flags: (SYN .

ACK (.l rrelevant since ACK not set)
FIN 5 \ 0 Advertised window
RST -
PSH Checksum Urgent pointer
URG |

- < B N /‘ o] - -
OptioRS (varianble)

A tells B it wants to open a connection...

Step 2: B's SYN-ACK Packet

B's port A's port
B's Initial Sequence Number
Flags: /SYN N
ACK | i AlCK = A’s !SN plus 1
FIN 5 0 ' Advertised window
RST
PSH Checksum Urgent pointer
URG | ‘ |
Opiicns-(variable)

B tells A it accepts, and is ready to hear the next byte...
... upon receiving this packet, A can start sending data

Step 3: A’'s ACK of the SYN-ACK

A's port B's port
A's Initial Sequence Number
Flags: SYN ,
ACK - B's ISN pl)lus 1
FIN 20B | o | Flags | Advertised window
RST
PSH Checksum Urgent pointer
URG |

- < B - /‘ o] - -
OptionRs (variable)

A tells B it’s likewise okay to start sending
... upon receiving this packet, B can start sending data

Timing Diagram: 3-Way Handshaking

Passive
Open
Active
Open Server

Client (initiator)
listen()

connect ()

What if the SYN Packet Gets Lost?

o Suppose the SYN packet gets lost
» Packet is lost Inside the network, or:
* Server discards the packet (e.g., it's too busy)

* Eventually, no SYN-ACK arrives
* Sender sets a timer and waits for the SYN-ACK
... and retransmits the SYN If needeo

 How should the TCP sender set the timer?
* Sender has no idea how far away the receiver is

» Hard to guess a reasonable length of time to wait
SHOULD (RFCs 1122 & 2988) use default of 3 seconds

Some implementations instead use 6 seconds

SYN Loss and Web Downloads

* User clicks on a hypertext link
* Browser creates a socket and does a “connect”
* The “connect” triggers the OS to transmit a SYN

e |fthe SYN Is lost...

* 3-6 seconds of delay: can be very long
* User may become impatient
» ... and click the hyperlink again, or click “reload”

* User triggers an "abort” of the “connect”
* Browser creates a new socket and another “connect”
* Essentially, forces a faster send of a new SYN packet!
* Sometimes very eftective, and the page comes quickly

Tearing Down the Connection

Normal Termination, One Side At A Time

B 4 1
2
< A
Z, 2 Y s > > z \m X
> %TS/\% g\ \z <
ﬁ o 0 O
A _ X' l

time

* Finish (FIN) to close and receive remaining bytes

Connection

FIN occupies one byte in the sequence space now closed
» Other host acks the byte to confirm connectior)

e (Closes A’s side of the connection, but not B’s

 Until B likewise sends a FIN
* Which A then acks

now half-closed

TIME_WAIT:

Avold reincarnation

B W|| retransmit FIN

Normal Termination, Both Together

B 4 4
o T
Ac —
g é%%k@ z % &
% 3(73 Q 7 o %f
ﬁ o o O ﬁ
A J

time

TIME_WAIT:

Avolid reincarnation
Can retransmit

FIN ACK if ACK lost Connection
now closed

e Same as before, but B sets FIN with their ack of A's FIN

Abrupt Termination

B 4, £
02
X
Z ‘ZQ R 3 ~ o &~
</ S 2 2
a2 \n /s \& = 2%
ﬁ o 0 O
A .

time

e AsendsaRESET (RST)toB
* E.g., because application process on A crashed
e Thatsit
B does not ack the RST
* Thus, RST is not delivered reliably

* And: any data in flight is lost
* But: it B sends anything more, will elicit another RST

TCP Header

Source port Destination port

Sequence number

"lags: iy;l(Acknowledgment
FIN Advertised window
RST
Checksum Urgent pointer
URG

Options (variable)

TCP State Transitions

CLOSED
A

Active open /SYN
Passive open Close

Y
LISTEN

SYN/SYN + ACK Send SYN
> SYN/SYN + ACK SYN_SENT
ACK SYN + ACK/ACK
j f Data, ACK

SYN_RCVD

Close/FIN ESTABLISHED | < eXChangeS
are in here
\ Close/FIN FIN/ACK
FIN_WAIT_1 "I CLOSE_WAIT
9 FIN/ACK\'
LACK 4 lCIose/FIN

FIN_WAIT_2 CLOSING LAST_ACK
LACK Timeout after two lACK

LFIN/ACK
~ TIME_WAIT ~ CLOSED

segment lifetimes

After all that work. ..

« ESTABLISHED is the part where we transmit data.

* \When our congestion control algorithm runs.

AIMD Mechanics in Reno

o “CWND?” is the measured “congestion window”
o Sending window is min(CWND, Advertised Window)
* Reno follows three key stages to determine CWND:
e (1) Slow start, where it uses multiplicative increase
e (2) Congestion avoidance, where it uses additive increase

* (3) Fast recovery, where it “recovers” from “easy” packet losses.

e |NVhat do you mean, Easy Packet Losses?

Duplicate ACKs

* | can pre-emptively figure out that loss has happened without a timer going oft.
e How?

e Say | receive packets with MSS 1000, sequence numbers 1000, 2000, 4000,
5000, 6000....

e | know | missed 3000!

* Recall that TCP uses cumulative ACKs — | ACK the next byte such that | have
the data for all bytes lower than that.

e |f | see the same “"dup” ACK three times, | determine there is a loss.

| eads to the TCP “Sawtooth”

Window
A Dup ACK Loss

P

Assumption: imeout Losses are Worse

 Timeout can mean (but not always) that lots of packets were lost and
| have severely overshot.

e So | should react more severely to a timeout.

* |nstead of halving my window, | will go all the way back to slow start
and start over again!

Window

Dup ACK Loss

v
v

Timeout loss

P

Print this out and tape It above your bed.
This Is what you will implement for P2!

timeoyt | o
s]ow cwnd > ssthresh congstn. ACK
start f \ avoid.

é timeout

new ACK

timeout new AC
dupACK=3

dupACK=3

* fast
dupACK recovery

summary

o All TCP connections use the same handshake, initial sequence
numbper exchange, etc.

o But determining the right window size Is hard because the network
does not tell us directly how much capacity is available to us!

* There are lots of algorithms to measure “CWND”

 Reno Is the classic algorithm, and it uses AIMD.

Thursaay

 \WWhy AIMD converges to fairness
e Calculating TCP throughput with loss
* Problems with TCP Reno

e New TCPs: Cubic, BBR

e |sthe Internet fair?

