Outline

- Encoding
 - Bits to digital signal
- Framing
 - Bit stream to packets
- Packet loss & corruption
 - Error detection
 - Flow control
 - Loss recovery

Error Coding

- Transmission may introduce errors into a message.
 - Received “digital signal” is different from that transmitted
 - Single bit errors versus burst errors
- Detection:
 - Requires a convention that some messages are invalid
 - Hence requires extra bits
 - An (n,k) code has codewords of n bits with k data bits and r = (n-k) redundant check bits
- Correction
 - Forward error correction: many related code words map to the same data word
 - Detect errors and retry transmission

Error Detection

- EDC= Error Detection and Correction bits (redundancy)
- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - Protocol may miss some errors, but this is rare (more on this later)
 - Larger EDC field yields better detection and correction
Parity Checking

Single Bit Parity:
- Detect single bit errors

\[
\begin{array}{c|c|c}
\text{d data bits} & \text{parity bit} \\
\hline
0111000110101011 & 0
\end{array}
\]

Internet Checksum

- Goal: detect “errors” (e.g., flipped bits) in transmitted segment
- Must be easy to compute in software

Sender
- Treat segment contents as sequence of 16-bit integers
- Checksum: addition (1’s complement sum) of segment contents
- Sender puts checksum value into checksum field in header

Receiver
- Compute checksum of received segment
- Check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected.
- But maybe errors nonetheless?

But maybe errors nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment
Must be easy to compute in software

Sender
- Treat segment contents as sequence of 16-bit integers
- Checksum: addition (1’s complement sum) of segment contents
- Sender puts checksum value into checksum field in header

Receiver
- Compute checksum of received segment
- Check if computed checksum equals checksum field value:
 - NO - error detected
 - YES - no error detected.
- But maybe errors nonetheless?

Basic Concept: Hamming Distance

- Hamming distance of two bit strings = number of bit positions in which they differ.
- If the valid words of a code have minimum Hamming distance D, then D-1 bit errors can be detected.
- If the valid words of a code have minimum Hamming distance D, then [(D-1)/2] bit errors can be corrected.

\[
\begin{array}{c}
10110 \\
11010
\end{array}
\quad \text{HD}=2
\]

\[
\begin{array}{c}
10110 \\
11010
\end{array}
\quad \text{HD}=3
\]

Cyclic Redundancy Codes (CRC)

- Widely used codes that have good error detection properties.
- Can catch many error combinations with a small number of redundant bits
- Based on division of polynomials.
 - Errors can be viewed as adding terms to the polynomial
 - Should be unlikely that the division will still work
- Can be implemented very efficiently in hardware
- Examples:
 - CRC-32: Ethernet
 - CRC-8, CRC-10, CRC-32: ATM
Take-away: Encoding and Modulation

- Encoding and modulation work together
 - Must generate a signal that works well for the receiver – has good electrical properties
 - Must be efficient with respect to spectrum use
 - Can shift some of the burden between the two layers
 - Tradeoff is figured out by electrical engineers
- Maintaining good electrical properties
 - Spectrum efficient modulation requires more encoding
 - For example: 4B/5B encoding
- Error recovery
 - Aggressive modulation needs stronger coding

What is Used in Practice?

- No flow or error control.
 - E.g. regular Ethernet, just uses CRC for error detection
- Flow control only
 - E.g. Gigabit Ethernet
- Flow and error control.
 - E.g. X.25 (older connection-based service at 64 Kbs that guarantees reliable in order delivery of data)
- Flow and error control solutions also used in higher layer protocols
 - E.g., TCP for end-to-end flow and error control

Outline

- Datalink architectures
- Ethernet
- Wireless networking
 - Wireless Ethernet
 - Aloha
 - 802.11 family
 - Cellular

Datalink MAC Architectures

- Media Access control (MAC): who gets to send packet next?
- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to “routing”
 - But at the datalink instead of network layer
- Multiple access networks.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex
Datalink Classification

- Switch-based
 - ATM, frame relay
 - Packet switching
 - Switched LANs
 - Scheduled access
 - Cellular, FDDI, 802.11
 - Random access
 - Ethernet, 802.11, Aloha

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
 - Two or more transmitting nodes → “collision”
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - CSMA and CSMA/CD
 - Wireless protocols

Scheduled Access MACs

- Reservation systems
 - Central controller
 - Distributed algorithm, e.g. using reservation bits in frame
- Polling: controller polls each node
- Token ring: token travels around ring and allows nodes to send one packet
 - Distributer version of polling
 - FDDI, …

Problem: Sharing a Wire

- Just send a packet when you are ready
 - Does not work well: collisions! More on this later
 - Natural scheme – listen before you talk …
 - Works well in practice
 - A cheap form of coordination
 - But sometimes this breaks down
 - Why? How do we fix/prevent this?
Ethernet MAC Features

- Carrier Sense: listen before you talk
 - Avoid collision with active transmission
 - Assumes all nodes can hear each other
- Collision Detection during transmission
 - Listen while transmitting
 - If you notice interference → assume collision
 - Abort transmission immediately – saves time
 - Assumes a sender can identify competing transmissions while transmitting

Collision Detection: Depends on Packet Length

- Packets must be long enough to guarantee all nodes observe collision
- In this example:
 - A can decode packets
 - C observes collision
 - B and D cannot sense collision
 - Min packet length > 2x max prop delay

Collision Detection: Depends on the Wire Length

- Wires must be short enough to guarantee all nodes observe collision
- In this example
 - B and C will see collision
 - A and D cannot see collision
 - Min packet length > 2x max prop delay
Scaling Ethernet

- What about scaling? 10Mbps, 100Mbps, 1Gbps, ...
- Use a combination of reducing network diameter and increasing minimum minimum packet size
- Reality check: 40 Gbps is 4000 times 10 Mbps
 - 10 Mbps: 2.5 km and 64 bytes -> silly
 - Solution: switched Ethernet – see lecture 3
- What about a maximum packet size?
 - Needed to prevent node from hogging the network
 - 1500 bytes in Ethernet = 1.2 msec on original Ethernet
 - For 40 Gps -> 0.3 microsec -> silly and inefficient

Things to Remember

- Trends from CSMA networks to switched networks
- Need for more capacity
- Low cost and higher line rate
- Emphasis on low configuration and management complexity and cost
 - Fully distributed path selection
- Trends are towards “Software Defined Networks”
 - Network is managed by a centralized controller
 - Allows for the implementation of richer policies
 - Easier to manage centrally
 - Already common in data centers