
PROJECT 1
CHECKPOINT 1

TAs: Alex Bainbridge
Krithika Vijayan

AGENDA
•Project 1 Checkpoint 1
•Lex and yacc
• Intro to Git
•Se8ng up
•Q&A

What are you going to build?
A webserver that can handle

mul8ple concurrent connec8ons!

Can you recall building an HTTP
1.0 Proxy for 15-213 ???

Project 1: HTTP déjà vu
However this time….
•It is HTTP 1.1
•select() – based echo server handles

multiple clients
•Lex and Yacc for parsing HTTP 1.1

requests

Basic Idea behind Lex and Yacc

Socket Lex Yacc

Generate
Response

Read the
buffer and
pass a byte
at a 8me

Tokens
matching
your rule

Store state for token
stream matching
your grammar

Lex
• It's a program that breaks input into sets of "tokens," roughly

analogous to words.
• The general format of Lex source is:

{definitions} ------- Definition of tokens
%%
{rules} ---------- for handling the detected token
%%
{user subroutines} --- C code(Process tokens)

• The absolute minimum Lex program is thus %% (no
definitions, no rules) which translates into a program
which copies the input to the output unchanged.

Yacc
• YACC can parse input streams consis0ng of tokens with
certain values.
• YACC has no idea what 'input streams' are, it needs pre-
processed tokens.
• A full Yacc specifica0on file looks like:

{declara0ons} ------- Types of each token
%%
{rules} ---------- Grammar
%%
{programs} -------- C code

• The smallest legal Yacc specifica0on is
%%
rules

A VERY SIMPLE EXAMPLE FOR LEX & YACC
• Let's say we have a thermostat that we want to control using a

simple language.

heat on Heater on! heat off Heater off! target temperature 22 New temperature set!
• The tokens we need to recognize are: heat, on/off (STATE),
target, temperature, NUMBER.

Lex tokenizer

YACC GRAMMAR FILE

REMAINING PART OF THE YACC FILE

Intro to Git
Best resource?

Git Cheatsheet provided!

Daily workflow with git
•Check for any remote updates
•Do your work
•Test your work
•Check differences, try to isolate changes
•Commit your work; repeat as needed
•Check for any remote updates
•Push changes, or submit pull request

Translated to git commands
• git pull
Fetching from a remote repository
•vim, emacs, make, create, magic, etc.
Text editors to modify the code
• make test
Run your changes!
•git status
See all changed files

•git diff
Understand differences line by line
• git add
Stage changes, potentially line by line
• git commit -m 'Isolated changes x and y'
• git push
Update the remote repository

Let’s set up together!!

� ssh andrewid@unix.andrew.cmu.edu
download Project1_starter.tar.gz from the course

website and scp it to ~/private
(Ex: scp Downloads/checkpoint1.tar.gz
andrewid@unix.andrew.cmu.edu: private/15-441-
project-1)
�tar –zxvf Project1_starter.tar.gz
�cd 15-441-project-1
�git init

mailto:andrewid@unix.andrew.cmu.edu

REFERENCES
• h"ps://github.com/theonewolf/15-441-Recita;on-

Sessions/blob/master/recita;on1/recita;on1.pdf
• h"ps://github.com/theonewolf/15-441-Recita;on-

Sessions/blob/master/recita;on2/recita;on2.pdf
• h"ps://github.com/theonewolf/15-441-Recita;on-

Sessions/blob/master/recita;on3/recita;on3.pdf
• h"p://moss.csc.ncsu.edu/~mueller/codeopt/codeopt

00/ y_man.pdf
• h"ps://www.tldp.org/HOWTO/Lex-YACC-HOWTO-4.html

