PROJECT 1

CHECKPOINT 1

TAs: Alex Bainbridge Carnegie
Krithika Vijayan Me!l(m .
Universi

AGENDA

*Project 1 Checkpoint 1
*Lex and yacc

*|ntro to Git

*Setting up

*Q&A

What are you going to build?

A webserver that can handle
multiple concurrent connections!

Can you recall building an HTTP
1.0 Proxy for 15-213 ?7?

Project 1: HTTP déja vu

However this time....

*ltisHTTP 1.1
*select() — based echo server handles

multiple clients
*Lex and Yacc for parsing HTTP 1.1

requests

Basic Idea behind Lex and Yacc

Socket

Read the
buffer and
pass a byte
at a time

Lex

Tokens
matching
your rule

Yacc

Store state for token
stream matching
| your grammar

Generate
Response

Lex

* It's a program that breaks input into sets of "tokens," roughly
analogous to words.

* The general format of Lex source is:

{definitions} ------- Definition of tokens

%%

{rules} = ------- for handling the detected token
%%

{user subroutines} --- C code(Process tokens)

 The absolute minimum Lex program is thus %% (no
definitions, no rules) which translates into a program
which copies the input to the output unchanged.

Yacc

* YACC can parse input streams consisting of tokens with
certain values.

* YACC has no idea what 'input streams' are, it needs pre-
processed tokens.

* A full Yacc specification file looks like:

{declarations} ------- Types of each token
%%
{rules} = ------- Grammar
%%
{programs} -----—--- C code
* The smallest legal Yacc specification is
%%

rules

A VERY SIMPLE EXAMPLE FOR LEX & YACC

* Let's say we have a thermostat that we want to control using a
simple language.

heat on
Heater on!

heat off

Heater off!

target temperature 22
New temperature set!

* The tokens we need to recognize are: heat, on/off (STATE),
target, temperature, NUMBER.

Lex tokenizer
3 {

#include <stdio.h>
#include "y.tab.h"

%}

%%

[0-9]+ return NUMBER;

heat return TOKHEAT;

on|off return STATE;

target return TOKTARGET;
temperature return TOKTEMPERATURE;

\n /* ignore end of line */;
[\t]+ /* ignore whitespace */;
3%

YACC GRAMMAR FILE

commands: /* empty */
commands command

-e

command :
heat switch

target_set

’

heat_switch:
TOKHEAT STATE

{
}

printf ("\tHeat turned on or off\n");

target_set:
TOKTARGET TOKTEMPERATURE NUMBER

{
}

printf (" \tTemperature set\n");

REMAINING PART OF THE YACC FILE

%{
#include <stdio.h>
#include <string.h>

void yyerror(const char *str)

{
}

fprintf (stderr,"error: %s\n",str);

int yywrap()
{

return 1;

yyparse();

%}

$token NUMBER TOKHEAT STATE TOKTARGET TOKTEMPERATURE

Intro to Git

Best resource?
Git Cheatsheet provided!

Daily workflow with git

*Check for any remote updates

*Do your work

*Test your work

*Check differences, try to isolate changes
Commit your work; repeat as needed
*Check for any remote updates

*Push changes, or submit pull request

Translated to git commands

* git pull

Fetching from a remote repository

*vim, emacs, make, create, magic, etc.
Text editors to modify the code

* make test
Run your changes!

*git status
See all changed files

eoit diff

Understand differences line by line

* git add

Stage changes, potentially line by line

e git commit -m 'Isolated changes x and y'
* git push

Update the remote repository

Let’s set up together!!

$ ssh andrewid@unix.andrew.cmu.edu

download Projectl_starter.tar.gz from the course
website and scp it to ~/private

(Ex: scp Downloads/checkpointl.tar.gz

andrewid@unix.andrew.cmu.edu: private/15-441-
project-1)

$ tar —zxvf Projectl_starter.tar.gz
$ cd 15-441-project-1
$ git init

mailto:andrewid@unix.andrew.cmu.edu

REFERENCES

* https://github.com/theonewolf/15-441-Recitation-
Sessions/blob/master/recitation1/recitationl.pdf

* https://github.com/theonewolf/15-441-Recitation-
Sessions/blob/master/recitation2/recitation2.pdf

* https://github.com/theonewolf/15-441-Recitation-
Sessions/blob/master/recitation3/recitation3.pdf

* http://moss.csc.ncsu.edu/~mueller/codeopt/codeopt
00/ y_man.pdf
* https://www.tldp.org/HOWTO/Lex-YACC-HOWTO-4.html

